
OSLα: Online Structure Learning using
Background Knowledge Axiomatization

Evangelos Michelioudakis1,2, Anastasios Skarlatidis1, Georgios Paliouras1, and
Alexander Artikis1,3

Institute of Informatics and Telecommunications, NCSR “Demokritos”1

School of Electronic and Computer Engineering, Technical University of Crete2

Department of Maritime Studies, University of Piraeus3

{vagmcs,anskarl,paliourg,a.artikis}@iit.demokritos.gr

Abstract. We present OSLα — an online structure learner for Markov
Logic Networks (MLNs) that exploits background knowledge axioma-
tization in order to constrain the space of possible structures. Many
domains of interest are characterized by uncertainty and complex rela-
tional structure. MLNs is a state-of-the-art Statistical Relational Learn-
ing framework that can naturally be applied to domains governed by
these characteristics. Learning MLNs from data is challenging, as their
relational structure increases the complexity of the learning process. In
addition, due to the dynamic nature of many real-world applications, it
is desirable to incrementally learn or revise the model’s structure and
parameters. Experimental results are presented in activity recognition
using a probabilistic variant of the Event Calculus (MLN−EC) as back-
ground knowledge and a benchmark dataset for video surveillance.

Keywords: Markov Logic Networks, Event Calculus, Uncertainty

1 Introduction

Many real-world application domains are characterized by both uncertainty and
complex relational structure. Regularities in these domains are very hard to
identify manually, and thus automatically learning them from data is desirable.
The field of Statistical Relational Learning (SRL) [7] concerns the induction of
probabilistic knowledge by combining the powers of logic and probability. One
of the logic-based frameworks that handles uncertainty, proposed in the area of
SRL, is Markov Logic Networks (MLNs) [24] which combines first-order logic
and probabilistic graphical models.

Structure learning approaches that focus on MLNs have been successfully
applied to a variety of applications where uncertainty holds [6]. However, most
of these methods are batch algorithms that cannot handle large training sets or
large data streams as they are bound to repeatedly perform inference over the
entire training set in each learning iteration. This is computationally expensive,
rendering these algorithms inapplicable to real-world applications. Huynh and
Mooney [12] proposed an online strategy, called OSL, for updating both the

2 Online Structure Learning using Background Knowledge Axiomatization

structure and the parameters of the model, in order to effectively handle large
training datasets. Nevertheless, OSL does not exploit background knowledge
during the search procedure and explores structures that are very common and
therefore largely useless for the purposes of learning, yielding models that are
not adequate generalizations of the data.

We propose the OSLα online structure learner for MLNs, which extends OSL
by exploiting a given background knowledge, in order to effectively constrain
the search space of possible structures during learning. The space is constrained
subject to characteristics imposed by the rules governing a specific task, herein
stated as axioms. To demonstrate the benefits of OSLα we focus on the domain of
activity recognition. As a background knowledge we are employing MLN−EC [27], a
probabilistic variant of the Event Calculus [20] for event recognition applications.

Running Example. In activity recognition the goal is to recognize com-
posite events (CE) of interest given an input stream of simple derived events
(SDEs). CEs can be defined as relational structures over sub-events, either CEs
or SDEs, and capture the knowledge of a target application. Due to the dynamic
nature of real-world applications, the CE definitions may need to be refined over
time or the current knowledge base may need to be enhanced with new defini-
tions. Manual curation of event definitions is a tedious and cumbersome process
and thus machine learning techniques to automatically derive the definitions are
essential. The proposed OSLα method is tested on the task of activity recog-
nition from surveillance video footage. The goal is to recognize activities that
take place between multiple persons, e.g. people meeting and moving together,
by exploiting information about observed activities of individuals. The input
stream of SDEs, represents people walking, running, staying active, or inactive,
and spatial relations, e.g. persons being relatively close to each other.

The remainder of the paper is organized as follows. Section 2 provides back-
ground on MLNs and MLN−EC. Section 3 discusses related work on structure
learning. Section 4 describes our proposed method for online structure learning.
Section 5 reports the experimental results and Section 6 proposes directions for
future work and concludes.

2 Background

2.1 Markov Logic Networks

Markov Logic Networks (MLNs) [24] consist of weighted first-order formulas.
They provide a way of softening the constraints that are imposed by the formulas
and facilitate probabilistic inference. Hence, unlike classical logic, all worlds in
MLNs are possible and they are quantified by a certain probability. In event
recognition the focus is on discriminative MLNs [26]. Let X be a set of evidence
atoms, and Y a set of query atoms. The former correspond to the input SDEs
while the latter correspond to the CEs of interest in event recognition. Then the
conditional probability of y given x is defined as follows:

Online Structure Learning using Background Knowledge Axiomatization 3

P (Y=y |X=x) =
1

Z(x)
exp

(|Fc|∑
i=1

wini(x,y)

)
Vectors x ∈ X and y ∈ Y represent a possible assignment of evidence X and
query/hidden variables Y , respectively. X and Y are the sets of possible assign-
ments that the evidence X and query/hidden variables Y can take. Fc is the set
of clauses produced by a knowledge base L and a domain of constants C. The
scalar value wi is the weight of the i -th clause and feature ni(x,y) represents
the number of satisfied groundings of the i -th clause in x and y. Z(x) is the
partition function that normalizes the probability over all possible assignments
y′ ∈ Y of query/hidden variables given the assignment x.

2.2 MLN−EC: Probabilistic Event Calculus based on MLNs

MLN−EC [27] is a probabilistic variant of the discrete Event Calculus [20] in MLNs
for event recognition applications. The ontology of MLN−EC consists of time-points,
events and fluents, represented by the finite sets T , E and F , respectively.
The underlying time model is linear and represented by integers. A fluent is
a property whose value may change over time by the occurrence of a particular
event. MLN−EC comprises the core domain-independent axioms of Event Calculus
defining whether a fluent holds or not at a specific time-point. In addition, the
domain-independent axiomatization incorporates the common sense law of iner-
tia, according to which fluents persist over time, unless they are affected by an
event occurrence. MLN−EC axioms (1) and (2), shown below, determine when a
fluent holds and axioms (3) and (4) when a fluent does not hold. Variables and
functions start with a lower-case letter and are assumed to be universally quan-
tified. Predicates start with an upper-case letter and predicate Next expresses
successive time-points to avoid numerical calculations.

HoldsAt(f , t+1)⇐
InitiatedAt(f , t) ∧
Next(t , t+1)

(1)

HoldsAt(f , t+1)⇐
HoldsAt(f , t) ∧
¬TerminatedAt(f , t) ∧
Next(t , t+1)

(2)

¬HoldsAt(f , t+1)⇐
TerminatedAt(f , t) ∧
Next(t , t+1)

(3)

¬HoldsAt(f , t+1)⇐
¬HoldsAt(f , t) ∧
¬InitiatedAt(f , t) ∧
Next(t , t+1)

(4)

MLN−EC combines composite event definitions with the domain-independent
axioms of MLN−EC (1)–(4), generating a compact knowledge base that serves
as a pattern for the production of Markov Networks, and enables probabilistic
inference and machine learning. The compact knowledge base is generated by
performing predicate completion [20] – a syntactic transformation that translates
formulas into logically stronger ones. The aim of predicate completion is to rule
out all conditions which are not explicitly entailed by the given formulas and
thus to introduce closed-world assumption to first-order logic.

4 Online Structure Learning using Background Knowledge Axiomatization

3 Related Work

Learning the MLN structure is a task that has received much attention lately.
The main approaches to this task stem either from graphical models [22, 8, 18]
or Inductive Logic Programming (ILP) [23, 4]. Since MLNs represent probabil-
ity distributions, better results are obtained by evaluation functions based on
likelihood, rather than typical ILP ones like accuracy and coverage [14].

Several approaches have been proposed to date [19, 9, 2, 17, 15, 16, 13], using
various strategies to search the space of possible structures. Most of these ap-
proaches are batch learning algorithms that cannot handle very large training
sets, due to their requirement to load all data in memory and carry out inference
in each iteration. Moreover, most of these algorithms are strictly data-driven and
thus they only seek to improve the likelihood of known true worlds.

Huynh and Mooney [12] proposed OSL that updates both the structure and
the parameters of the model using an incremental approach whereby training
data are consumed in (non-overlapping) micro-batches. Using incorrect predic-
tions of the current model, OSL searches for clauses, using relational pathfinding
over a hypergraph [25] constrained by mode declarations [21], and estimates or
updates their parameters using the AdaGrad learner [5]. The hypergraph may
be seen as a representation of the search space that contains true ground pred-
icates, while the paths found during the mode-guided search may be seen as
conjunctions of ground predicates, that are eventually generalized to clauses.

OSL does not exploit background knowledge that may be provided to con-
strain the search space and typically explores many structures (paths) that are
not useful. Specifically, even by performing mode-guided search over the hyper-
graph, the space of possible paths can become exponentially large. For instance,
the Event Calculus is a temporal formalism and therefore data used for training
will inevitably contain a large domain of time points (possibly) having multi-
ple complex temporal relations between events. Mode declarations alone cannot
handle this large domain. It will be then fundamental to prune a portion of the
search space and use only meaningful subspaces that may be found by exploiting
the background knowledge axiomatization.

Finally, all aforementioned approaches assume that domains do not contain
functions, which are useful in several applications, such as activity recognition.

4 Online Structure Learning using Background
Knowledge Axiomatization

Figure 1 presents the components of OSLα. The background knowledge consists
of the MLN−EC axioms (i.e., domain-independent rules) and an already known
(possibly empty) hypothesis (i.e., set of clauses). At any step t of the online pro-
cedure a training example (micro-batch) Dt arrives containing simple derived
events (SDEs), e.g. two persons walking individually, their distance being less
than 34 pixel positions and having the same orientation. Then, Dt is used to-
gether with the already learnt hypothesis to predict the truth values yPt of the

Online Structure Learning using Background Knowledge Axiomatization 5

composite events (CEs) of interest. This is achieved by (maximum a posteriori)
MAP inference based on LP-relaxed Integer Linear Programming [10]. Given Dt

OSLα constructs a hypergraph that represents the space of possible structures as
graph paths. Then for all incorrectly predicted CEs the hypergraph is searched
(guided by MLN−EC axioms) for definite clauses explaining these CEs. The paths
discovered during the search are translated into clauses and evaluated. The re-
sulting set of retained clauses is used for weight learning. Finally, the set of
weighted clauses is appended to the hypothesis Ht and the whole procedure is
repeated for the next training example Dt+1.

Learnt Hypothesis Ht:

0.51 HoldsAt(move(id1, id2), t+1)⇐
HappensAt(walking(id1), t)∧
HappensAt(walking(id2), t)

+

MLN−EC Axioms:
HoldsAt(f, t+1)⇐

InitiatedAt(f, t)

HoldsAt(f, t+1)⇐
HoldsAt(f, t) ∧
¬TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
TerminatedAt(f, t)

¬HoldsAt(f, t+1)⇐
¬HoldsAt(f, t) ∧
¬InitiatedAt(f, t)

OSLα

Micro-Batch Dt

HappensAt(walking(ID1), 99)
HappensAt(walking(ID2), 99)
OrientationMove(ID1, ID2, 99)
Close(ID1, ID2, 34, 99)
Next(99, 100)
HoldsAt(move(ID1, ID2), 100)
. . .

Micro-Batch Dt+1

HappensAt(exit(ID1), 200)
HappensAt(walking(ID2), 200)
¬OrientationMove(ID1, ID2, 200)
¬Close(ID1, ID2, 34, 200)
Next(200, 201)
¬HoldsAt(move(ID1, ID2), 201)
. . .

. . .

. . .

. . .

Data Stream/Training Examples

Inference Hypergraph

Paths to
Clauses

Clause
Evaluation

Weight
Learning

Fig. 1: The procedure of OSLα.

4.1 Extracting Templates from Axioms

OSLα begins by partitioning the background knowledge into a set of axiomsA and
a set of domain-dependent definitions B, that is the already known hypothesisH
(herein CE definitions). Each axiom α ∈ A must not contain any free variables,
meaning variables only appearing in a single predicate. It should also contain
exactly one so-called template predicate and at least one query predicate. In the
case of MLN−EC, A contains the four axioms (1)–(4), HoldsAt ∈ Q are the query
predicates and InitiatedAt, TerminatedAt ∈ P are the template predicates.
Those latter predicates specify the conditions under which a CE starts and stops
being recognized. They form the target CE patterns that we want to learn.

MLN−EC axioms can be used as a template T over all possible structures in
order to search only for explanations of the template predicates. Upon doing so,
OSLα does not need to search over time sequences, instead only needs to find
appropriate bodies over the current time-point for the following definite clauses:

6 Online Structure Learning using Background Knowledge Axiomatization

InitiatedAt(f , t)⇐ body

TerminatedAt(f , t)⇐ body

The body of these definitions is a conjunction of n literals `1∧· · ·∧ `n, which
can be seen as a hypergraph path, as we shall explain in the following sections.

Given the set of axioms A, OSLα partitions it into templates. Each template
Ti contains axioms with identical Cartesian product of domain types over their
template predicate variables. MLN−EC axioms (1)–(4) should all belong to one
template T1 because InitiatedAt and TerminatedAt both have joint domain
F ×T . The resulting template T1 is used during relational pathfinding (see Sec-
tion 4.3) to find an initial search set I of ground template predicates and search
the space of possible structures for specific bodies of the definite clauses. A tem-
plate Ti essentially provides mappings of its axioms to the template predicates
that appear in the bodies of these axioms. For instance, axiom (1) of T1 will be
mapped to the predicate InitiatedAt(f, t) since the aim is to construct a rule
for this template predicate.

4.2 Hypergraph and Relational Pathfinding

Similar to OSL, at each step t OSLα receives an example xt, representing the evi-
dence part ofDt and produces the predicted label yP

t = argmaxy∈Y〈w,n(xt,y)〉
using MAP inference. It then receives the true label yt and finds all ground atoms
that are in yt but not in yP

t denoted as ∆yt = yt \yP
t . Hence, ∆yt contains the

false positives/negatives of the inference step. In contrast to OSL, OSLα consid-
ers all misclassified (false positives/negatives) ground atoms instead of just the
true ones (false negatives) in order to find InitiatedAt definitions that correct
the false negatives and respectively TerminatedAt for the false positives. OSLα
searches the ground-truth world (xt,yt) for clauses specific to the axioms defined
in the background knowledge using the constructed templates Ti.

In order to discover useful clauses specific to the set of incorrectly predicted
atoms ∆yt, OSLα uses relational pathfinding [25]. It considersDt as a hypergraph
having constants as nodes and true ground atoms as hyperedges that connect
the nodes appearing as its arguments. Hyperedges are a generalization of edges
connecting any number of nodes. OSLα searches the hypergraph for paths that
connect the arguments of an input incorrectly predicted atom. Functions present
in Dt are transformed into auxiliary predicates (with the prefix AUX) that model
the behavior of a function and are required to indirectly include functions in the
hypergraph. For example the predicate AUXwalking matches the return values
of the function walking and has arity increased by 1 in order to incorporate the
return type of the function as an argument of the auxiliary predicate.

A hypergraph representing the training example Dt of Figure 1 is presented
on the left of Figure 2. For each incorrectly predicted ground atom in ∆yt (herein
incorrectly predicted CEs), relational pathfinding searches for all paths up to
a predefined length l. A path of hyperedges corresponds to a conjunction of

Online Structure Learning using Background Knowledge Axiomatization 7

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

Next

HoldsAt

Close

AUXmove

WalkingID1

WalkingID2

99

100

ID1

ID2

MoveID1ID2

34

Next

HoldsAt

Close

AUXmove

Fig. 2: Initial hypergraph (left) and reduced hypergraph (right). Unlabelled con-
tinuous lines represent HappensAt predicates, while unlabelled dashed lines and
dashed ellipses represent AUXwalking and OrientationMove respectively.

true ground atoms connected by their arguments and can be generalized into a
conjunction of variabilized literals. For example consider that the predicted label
yPt says that HoldsAt(MoveID1 ID2 , 100) is false, while supervision in Dt, that
is yt, says that it is true. Therefore it is an incorrectly predicted atom and the
hypergraph should be searched for paths explaining the misclassified CE. Below,
we present two of the paths that can be found by searching the left hypergraph
of Figure 2 for paths up to length l = 7.

{
HoldsAt(MoveID1 ID2 , 100), Next(99 , 100), HappensAt(WalkingID1 , 99),

HappensAt(WalkingID2 , 99), AUXwalking(WalkingID1, ID1), (5)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
HoldsAt(MoveID1 ID2 , 100), Next(99 , 100), Close(ID1 , ID2 , 34, 99), (6)

AUXmove(MoveID1ID2, ID1, ID2)
}

Similar to [12], in order to speed up relational pathfinding, OSLα uses path
mode declarations as language bias to constrain the space of paths. A modep(r, p)
has two components: a recall number r ∈ N0, and an atom p whose arguments
are place-markers optionally preceded by symbol ‘#’. A place-marker is ‘+’
(input), ‘−’ (output), or ‘.’ (ignore). The symbol ‘#’ preceding place-markers
specifies that this particular predicate argument will remain constant after the
generalization of the path. The recall number r limits the number of appearances
of the predicate p in a path to r. These place-markers restrict the search of
relational pathfinding. A ground atom is only added to a path if one of its
arguments has previously appeared as ‘input’ or ‘output’ arguments in the path
and all of its ‘input’ arguments are ‘output’ arguments of previous atoms. We
also introduce mode declarations for functions, defined as modef(r, p), that are
used to constrain auxiliary predicates in the hypergraph.

The hypergraph is constructed from a training example Dt, by only adding
true ground atoms in Dt that are input or output nodes. There is no point in
constructing the entire search space, because only the portion of it defined by

8 Online Structure Learning using Background Knowledge Axiomatization

the mode declarations will be eventually searched. Template predicates are not
added in the hypergraph because they are not allowed to appear in the body of
the definite clause. Hence, OSLα does not support recursive definitions.

4.3 Template Guided Search

Starting from each incorrectly predicted ground atom in ∆yt, we use the tem-
plates Ti constructed at the initial steps of the algorithm in order to find the
corresponding ground template predicates for which the axioms belonging in Ti

are satisfied by the current training example. As stated in Section 4.1 there is
only one template T1 containing all the axioms of MLN−EC. OSLα considers each
axiom α ∈ T1 in turn. Assume, for example, that one of these is axiom (1) and
we have incorrectly predicted that the ground atom HoldsAt(CE , T4) is false
(false negative). We substitute the constants of HoldsAt(CE , T4) into axiom
(1). The result of the substitution will be the following partially ground axiom:

HoldsAt(CE , T4) ⇐ Next(t , T4) ∧ InitiatedAt(CE , t) (7)

If after the substitution there are no variables left in the template predicate
of the axiom, OSLα adds the ground template predicate to the initial search
set I, containing all ground template predicates, and moves to the next axiom
in the template T1. In case there are variables left, such as in axiom (7) were
InitiatedAt has one remaining variable t, OSLα searches for all literals in the
axiom sharing variables with the template predicate. Here the only literal sharing
the remaining variable t is Next. For those literals, it searches the training data
for all jointly ground instantiations among those satisfying the axiom. Because
t represents time-points and Next describes successive time-points, there will
be only one true grounding of Next in the training data having as argument
the constant T3. OSLα substitutes the constant T3 into axiom (7) and adds
InitiatedAt(CE , T3) to the initial search set I. The same applies for axioms
(3) and (4) determining the termination conditions in the case of a false positive.

For each ground template predicate in the resulting initiation set I, the mode-
guided relational pathfinding is used to search the hypergraph for an appropriate
body. It recursively adds to the path hyperedges (i.e., ground atoms) that satisfy
the mode declarations. The search terminates when the path reaches a specified
maximum length or when no new hyperedges can be added.

By employing this procedure, the hypergraph is essentially reduced to contain
only ground atoms explaining the template predicates. Consider the hypergraph
presented on the left of Figure 2. By exploiting the Event Calculus axioms, the
hypergraph is reduced to contain only predicates that explain the InitiatedAt

and TerminatedAt predicates as presented in the right of Figure 2. The paths
(5) and (6) are pruned by removing the Next and HoldsAt predicates, resulting
into the paths (8) and (9) shown below. The pruning resulting from the template
guided search is essential to learn Event Calculus definitions, because the size of
the search space becomes independent of time.

Online Structure Learning using Background Knowledge Axiomatization 9

{
InitiatedAt(MoveID1 ID2 , 99), HappensAt(WalkingID1 , 99),

HappensAt(WalkingID2 , 99), AUXwalking(WalkingID1, ID1), (8)

AUXwalking(WalkingID2, ID2), AUXmove(MoveID1ID2, ID1, ID2)
}

{
InitiatedAt(MoveID1 ID2 , 99), Close(ID1 , ID2 , 34, 99), (9)

AUXmove(MoveID1ID2, ID1, ID2)
}

4.4 Clause Creation and Evaluation

In order to generalize paths into first-order clauses, we replace each constant ki
in a conjunction with a variable vi, except for those declared constant in the
mode declarations. Then, these conjunctions are used as a body to form definite
clauses using as head the template predicate present in each path. The auxiliary
predicates are converted back into functions. Therefore, from the paths (8) and
(9), the following definite clauses will be created:

InitiatedAt(move(id1 , id2), t)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

(10)
InitiatedAt(move(id1 , id2), t)⇐

Close(id1 , id2 , 34, t)
(11)

According to the definitions (10) and (11), the move CE is initiated either
when both entities are walking or the distance between them is less than 34
pixel positions. These definite clauses can be used together with the axioms
of the background knowledge in order to eliminate all template predicates by
exploiting equivalences resulting from predicate completion.

After the elimination process all resulting formulas are converted into clausal
normal form (CNF). Therefore the resulting set of clauses is independent of the
template predicates. Evaluation takes place for each clause c individually. The
difference between the number of true groundings of c in the ground-truth world
(xt,yt) and those in predicted world (xt,y

P
t) is then computed (note that yP

t was
predicted without c). Only clauses whose difference in the number of groundings
is greater than or equal to a predefined threshold µ will be added to the MLN:

∆nc = nc(xt,yt)− nc(xt,y
P
t) ≥ µ (12)

The intuition behind this measure is to add to the hypothesis H clauses whose
coverage of the ground-truth world is significantly (according to µ) greater than
that of the clauses already learnt.

Subsequently, it may be necessary to perform again predicate completion and
template predicate elimination because the resulting set of formulas returned by
this transformation may change entirely if any one definite clause is removed dur-
ing evaluation. To illustrate these changes in the resulting hypothesis, consider
the domain-dependent definitions of move – i.e., rules (10)–(11). After predicate
completion, these rules will be replaced by the following formula:

10 Online Structure Learning using Background Knowledge Axiomatization

InitiatedAt(move(id1 , id2), t)⇔(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

) ∨
Close(id1 , id2 , 34, t)

(13)

The resulting rule (13) defines all conditions under which the move CE is ini-
tiated. Based on the equivalence in formula (13), the domain-independent axiom
(1) of MLN−EC automatically produces the following free of template predicates
(i.e, InitiatedAt, TerminatedAt) rules:

HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(walking(id1), t) ∧
HappensAt(walking(id2), t)

(14)
HoldsAt(move(id1 , id2), t+1)⇐

Close(id1 , id2 , 34, t)
(15)

Similarly, the inertia axiom (4) produces:

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
(HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t))

∨
Close(id1 , id2 , 34, t)

) (16)

Consider now, that during the evaluation process the definite clause (15)
yields a score less than µ and therefore must be discarded. Then, the resulting
hypothesis is reduced to rule (14) produced by axiom (1), as well as rule (17)
produced by axiom (4) presented below:

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

) (17)

4.5 Weight Learning

The weights of all retained clauses are optimized by the AdaGrad online learner
[5]. At each step t of OSLα the learnt hypothesis may be updated by adding new
clauses found during the hypergraph search and therefore the resulting set of
clauses Ct may be different from the set Ct−1. In order for AdaGrad to be able to
apply weight updates to a constantly changing theory, OSLα searches for clauses
in the current theory Ct that are θ-subsumed [3] by a clause in the previous
theory, in order to inherit its weight. This way the already learnt weight values
are transferred to the next step of the procedure. All other clauses are considered
new and their weights are set to an initial value close to zero. To illustrate the
procedure consider a set of definite clauses Ct−1 learnt at step t−1, including
rules (10) as well as rule (18) presented below:

TerminatedAt(move(id1 , id2), t)⇐
HappensAt(inactive(id1), t) ∧
HappensAt(active(id2), t)

(18)

Online Structure Learning using Background Knowledge Axiomatization 11

By performing predicate completion upon the set Ct−1 and using the MLN−EC
axioms to eliminate the template predicates, the following hypothesis arises:

Σt−1 =

HoldsAt(move(id1 , id2), t+1)⇐

HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

Σ′t−1 =

HoldsAt(move(id1 , id2), t+1)⇐
HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(inactive(id1), t) ∧ HappensAt(active(id2), t)

)
¬HoldsAt(move(id1 , id2), t+1)⇐

¬HoldsAt(move(id1 , id2), t) ∧
¬
(
HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t)

)
The set Σt−1 contains specialized definitions of axioms (1) and (3), specify-

ing that a fluent holds (or does not hold) when its initiation (or termination)
conditions are met. The set Σ′t−1 contains specialized definitions of the inertia
axioms (2) and (4), determining whether a specific fluent continues to hold or
not at any instance of time. Weights for both sets are estimated. In the next
learning step t of OSLα the set of definite clauses Ct may be expanded by the
following learnt definite clause:

TerminatedAt(move(id1 , id2), t)⇐
HappensAt(exit(id1), t)

(19)

Similarly to Ct−1, by applying predicate completion to Ct and eliminating the
template predicates using the MLN−EC axioms, a different hypothesis arises. Σt

includes the rules of Σt−1, as well as the following, resulting from rule (19):

¬HoldsAt(move(id1 , id2), t+1)⇐
HappensAt(exit(id1), t)

Σ′t includes the first rule appearing in Σ′t−1, as well as the following rule:

¬HoldsAt(move(id1 , id2), t+1)⇐
¬HoldsAt(move(id1 , id2), t) ∧
¬
(
(HappensAt(walking(id1), t) ∧ HappensAt(walking(id2), t))

∨ HappensAt(exit(id1), t)
)

Note that in the set Σt a new rule has appeared and in the set Σ′t the
second rule changed by incorporating a new literal. Therefore in order to refine
the weights of the current theory at step t a mapping of the previous learned
weights onto the current theory is required so that the already learned values are
retained. Using θ-subsumption, OSLα searches for clauses in Ct that are subsumed
by clauses in Ct−1 to inherit their weights. In the example above, the first rule
of Σt and Σ′t, as well as the second rule of Σt are identical to the previous ones.

12 Online Structure Learning using Background Knowledge Axiomatization

Moreover, the second rule of Σ′t is θ-subsumed by the second rule of Σ′t−1. Hence
the weights of the old rules will be used for the new ones. The last rule of Σt is
completely new and its weight is set to a default initial value.

At the end of the OSLα learning we can choose to remove clauses whose
weights are smaller than a predefined threshold ξ. Hence, the hypothesis may be
pruned significantly, with negligible penalty in accuracy.

All algorithms composing OSLα (e.g., hypergraph construction), in pseudo-
code, are available from iit.demokritos.gr/~vagmcs/pub/osla/appendix.pdf.

5 Empirical Evaluation

We evaluate OSLα in activity recognition, using the publicly available benchmark
dataset of the CAVIAR project1. The dataset comprises 28 surveillance videos,
where each frame is annotated by human experts from the CAVIAR team on two
levels. The first level contains SDEs that concern activities of individual persons
or the state of objects. The second level contains CE annotations, describing
the activities between multiple persons and/or objects, i.e., people meeting and
moving together, leaving an object and fighting.

5.1 Experimental Setup

The input to the learning methods being compared is a stream of SDEs along
with the CE annotations. The SDEs represent people walking, running, staying
active, or inactive. The first and last time that a person is tracked is represented
by the enter and exit SDEs. Additionally, the coordinates of tracked persons are
also used to express qualitative spatial relations, e.g. two persons being relatively
close to each other. The CE supervision indicates when each of the CEs holds.
The structure of the training sequences is presented Figure 1. Each sequence is
composed of input SDEs (HappensAt), precomputed spatial constraints (Close),
and the corresponding CE annotations (HoldsAt). Negated predicates in the
sequence state that the truth value of the corresponding predicate is False.

From the 28 videos, we have extracted 19 sequences that are annotated with
the meet and/or move CEs. The rest of the sequences in the dataset are ig-
nored, as they do not contain positive examples of the target CEs. Out of the
19 sequences, 8 are annotated with both meet and move activities, 9 are anno-
tated only with move and 2 only with meet. The total length of the extracted
sequences is 12869 frames. Each frame is annotated with the (non-)occurrence
of a CE and is considered an example instance. The whole dataset contains a
total of 63147 SDEs and 25738 annotated CE instances. There are 6272 example
instances in which move occurs and 3722 in which meet occurs. Consequently,
for both CEs the number of negative examples is significantly larger than the
number of positive examples, specifically 19466 for move and 22016 for meet.

Throughout the experimental analysis, the evaluation results were obtained
using MAP inference, as per [10] and are presented in terms of True Positives

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

Online Structure Learning using Background Knowledge Axiomatization 13

(TP), False Positives (FP), False Negatives (FN), Precision, Recall and F1 score.
All reported statistics are micro-averaged over the instances of recognized CEs
using 10-fold cross validation over the 19 sequences. The average SDEs per fold
are 56832 and the average positive CEs are 3350 and 5600 for meet and move

respectively. The experiments were performed in a computer with an Intel i7
4790@3.6GHz processor (4 cores and 8 threads) and 16GiB of RAM, running
Apple OSX version 10.11. All weight and structure learning methods are imple-
mented in LoMRF2, an open-source implementation of MLNs.

We ran experiments using the AdaGrad [5] and CDA [11] online weight learn-
ers as well as a batch max-margin learner [10], using manual definitions developed
in [1]3. These definitions take the form of common sense rules and describe the
conditions under which a CE starts or ends (InitiatedAt, TerminatedAt). For
example, when two persons are walking together with the same orientation, then
move starts being recognized. Similarly, when two persons walk away from each
other, then move stops being recognized. We also include in the experiments the
results of the logic-based activity recognition method of [1], hereafter ECcrisp,
that employs a different variant of the Event Calculus, uses the same manual
definitions of CEs and cannot perform probabilistic reasoning.

Method Precision Recall F1 score

ECcrisp 0.6868 0.8556 0.7620

MaxMargin 0.9189 0.8133 0.8629

CDA 0.9061 0.4878 0.6342

AdaGrad 0.7228 0.8547 0.7833

OSLα 0.8192 0.8509 0.8347

(a) Results for the meet CE (µ = 4)

Method Precision Recall F1 score

ECcrisp 0.9093 0.6390 0.7506

MaxMargin 0.8443 0.9410 0.8901

CDA 0.9032 0.6706 0.7697

AdaGrad 0.9172 0.6674 0.7726

OSLα 0.8056 0.7522 0.7780

(b) Results for the move CE (µ = 1))

Table 1: Recognition accuracy for the two CEs.

Method meet move

OSLα 00h 23m 04s 1h 59m 06s

OSL > 25h 00m 00s -

Table 2: Average training times for meet and move CE.

2 https://github.com/anskarl/LoMRF
3 The MLN−EC definitions and CAVIAR dataset can be found in www.iit.demokritos.

gr/~anskarl/pub/mlnec/MLN-EC_CAVIAR-20130319-00_07_20.tar.bz2

14 Online Structure Learning using Background Knowledge Axiomatization

5.2 Experimental Results

We ran structure learning using 10-fold cross validation over 5 distinct values of
the evaluation threshold µ — see formula (12). (All other numerical thresholds
were manually set.) The highest accuracy is achieved by using µ=4 and µ=1
for the meet and move CEs respectively. See Tables 1a and 1b. The batch max-
margin weight learning yields the best overall accuracy due the fact that it
uses all the data at once to estimate the weights. AdaGrad is the second best
choice among the weight learners as it yields more accurate results as opposed
to CDA. It also outperforms the unweighted manual knowledge base ECcrisp.
OSLα achieves very good results, outperforming AdaGrad in the meet CE and
achieving a similar F1 score with it in the move CE. This is very encouraging
given that OSLα does not use manually curated rules.

Table 2 presents the averaged training times for the two CEs. The training
time for move is much higher than that for meet. This is because move includes
the predicate OrientationMove in its predicate mode declarations, leading to a
larger search space. We also attempted to perform probabilistic structure learn-
ing on this dataset using OSL. Specifically, we began running experiments for
the meet CE and we terminated the experimentation after 25 hours. During this
time OSL had processed only 4 training examples (micro-batches) out of the 17
of the first fold. OSLα on the other hand performed 10 fold cross validation for
the meet CE in about 4 hours.

(-2
,-1
.5
]

(-1
.5
,-1
]

(-1
,-0
.5
]

(-0
.5
, 0
]

(0
, 0
.5
]

(0
.5
, 1
]

(1
, 1
.5
]

(1
.5
, 2
]

(2
, 2
.5
]

0

50

100

150

weight

cl
au

se
s

(-2
.5
,-2
]

(-2
,-1
.5
]

(-1
.5
,-1
]

(-1
,-0
.5
]

(-0
.5
, 0
]

(0
, 0
.5
]

(0
.5
, 1
]

(1
, 1
.5
]

(1
.5
, 2
]

(2
, 2
.5
]

0

100

200

300

400

weight

cl
au

se
s

Fig. 3: Weight distribution learned for meet (left) and move (right).

In order to secure efficient CE recognition, we prune a portion of the learned
weighted structures having absolute weights below a certain threshold ξ, for
various values of ξ, and present the results in terms of both accuracy and testing
time. We begin by running OSLα on all 19 sequences of the dataset and present
a histogram for each CE representing the distribution of weights learned (Figure
3). The histograms inform us about the portion of the theory that will be pruned
for each ξ value. Note that there is a larger number of clauses with weight values
in the range (−1, 1). Some of these clauses may be pruned in order to simplify the
model without significantly hurting the accuracy, but yielding better inference

Online Structure Learning using Background Knowledge Axiomatization 15

0 0.1 0.5 1
0

100

200

300

245
229

178

50

ξ

cl
au

se
s

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.83 0.83 0.83

0.69

ξ

F
1
sc
or
e

0 0.1 0.5 1
0

200

400

600
539

430
395

52

ξ

se
co
n
d
s

0 0.1 0.5 1
0

200

400

600

800

1,000

780 745

531

169

ξ

cl
au

se
s

0 0.1 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.78 0.78
0.71

0.65

ξ

F
1
sc
or
e

0 0.1 0.5 1
0

200

400

600

660

540 530

376

ξ

se
co
n
d
s

Fig. 4: Effect in the number of clauses learned (left), accuracy (center), and test
time (right) as ξ increases for the meet CE (top) and the move CE (bottom).

times. We pruned the resulting structure for 3 distinct values of ξ and present
the results obtained over 10 folds.

Figure 4 presents the reduction in the number of clauses in the resulting
theory and the effect in accuracy and testing time as ξ increases. It is worth
noting that ξ=0.5 results in a slight reduction in accuracy for move and no
reduction for meet, but test time is improved a lot. Therefore, we can safely
prune a subset of the resulting theory in order to improve inference performance.

6 Conclusions and Future Work

We presented the OSLα structure learner for MLNs that exploits background
knowledge and uses the MLN−EC axioms to construct CE definitions. The use of
MLN−EC axioms allows OSLα to constrain the space of possible structures (i.e.,
hypergraph) and search only for clauses having characteristics imposed by these
axioms. OSLα considers both types of incorrectly predicted CEs (false positives
and negatives). Experimental results in activity recognition using a real-world
benchmark dataset showed that OSLα outperforms event recognition based on
manual rules, and, in some cases, weighted manual definitions. Moreover, OSLα
outperforms OSL by learning CE definitions orders of magnitude faster.

We are exploring several directions for future work, such as improving the
hypergraph search further using a heuristic or randomized (parallel) graph search
procedure, and learning definitions that include negated predicates. We are also
studying the problem of structure learning in the presence of unobserved data.

Acknowledgments. This work has been funded by the EU FP7 project SPEEDD
(619435).

16 Online Structure Learning using Background Knowledge Axiomatization

References

1. Artikis, A., Skarlatidis, A., Paliouras, G.: Behaviour Recognition from Video Con-
tent: a Logic Programming Approach. IJAIT, 193–209 (2010)

2. Biba, M., Ferilli, S., Esposito, F.: Discriminative Structure Learning of Markov Logic
Networks. In: Proc. of the 18th Int. Conf. on ILP, 59–76 (2008)

3. De Raedt, L.: Logical and Relational Learning, Springer Berlin Heidelberg (2008)
4. De Raedt L., Dehaspe, L.: Clausal discovery. Mach. Learn., 26, 99–146 (1997)
5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res., 12, 2121–2159 (2011)
6. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence.

Morgan & Claypool Publishers (2009)
7. Getoor, L., Taskar B.: Introduction to Statistical Relational Learning (2007)
8. Heckerman, D.: Learning in Graphical Models. A Tutorial on Learning with

Bayesian Networks, 301–354 (1999)
9. Huynh, T.N., Mooney, R.J.: Discriminative structure and parameter learning for

markov logic networks. In: Proc of the 25th ICML, 416–423 (2008)
10. Huynh, T.N., Mooney, R.J.: Max-Margin Weight Learning for Markov Logic Net-

works. In: Proc. of the ECML PKDD, 564–579 (2009)
11. Huynh, T.N., Mooney, R.J.: Online Max-Margin Weight Learning for Markov Logic

Networks. In: Proc. of the 11th SDM, 642–651 (2011)
12. Huynh, T.N., Mooney, R.J.: Online Structure Learning for Markov Logic Networks.

In: Proc of the ECML PKDD, 81–96 (2011)
13. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Gradient-based boosting for

statistical relational learning: The markov logic network and missing data cases.
Mach. Learn., 100, 75–100 (2015)

14. Kok, S., Domingos P.: Learning the structure of Markov logic networks. In: Proc.
of 22nd ICML, 441–448 (2005)

15. Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph
lifting. In: Proc. of the 26th ICML, 505–512 (2009)

16. Kok, S., Domingos, P.: Learning markov logic networks using structural motifs. In:
Proc. of the 27th Int. Conf. on Machine Learning (ICML), 551–558 (2010)

17. Khosravi, H., Schulte, O., Man, T., Xu, X., Bina, B.: Structure learning for markov
logic networks with many descriptive attributes. In: Proc. of the 24th AAAI (2010)

18. McCallum, A.: Efficiently Inducing Features of Conditional Random Fields. In:
Proc. of the 19th UAI, 403–410 (2003)

19. Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network struc-
ture. In: Proc. of the 24th ICML, 625–632 (2007)

20. Mueller, E.T.: Event Calculus. In: Handbook of Knowledge Representation, vol. 3
of Foundations of Artificial Intelligence, 671–708, Elsevier (2008)

21. Muggleton, S.: Inverse Entailment and Progol. New Gen. Comput., 245–286 (1995)
22. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 380–393, (1997)
23. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. (1990)
24. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. (2006)
25. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In Proc. of the

10th AAAI, 50–55 (1992)
26. Singla, P., Domingos, P.: Discriminative Training of Markov Logic Networks. In:

Proc. of the 20th AAAI, 868–873 (2005)
27. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic Event Cal-

culus for Event Recognition. ACM Trans. on Comput. Logic, 16, 1–37 (2015)

