
Extending Event-Driven Architecture for Proactive
Systems

Fabiana Fournier
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8296489
fabiana@il.ibm.com

Alexander Kofman
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8281055
kofman@il.ibm.com

Inna Skarbovsky
IBM Research – Haifa

Haifa University Campus
Haifa 3498825, Israel

+972 4 8281330
inna@il.ibm.com

Anastasios Skarlatidis
Institute of Informatics and

Telecommunications, NCSR
“Demokritos”

Athens 15310, Greece

+30 210 6503217

anskarl@iit.demokritos.gr

ABSTRACT

Proactive Event-Driven Computing is a new paradigm, in which a

decision is not made due to explicit users' requests nor is it made

as a response to past events. Rather, the decision is autonomously

triggered by forecasting future states. Proactive event-driven

computing requires a departure from current event-driven

architectures to ones capable of handling uncertainty and future

events, and real-time decision making. We present a proactive

event-driven architecture for Scalable Proactive Event-Driven

Decision-making (SPEEDD), which combines these capabilities.

The proposed architecture is composed of three main components:

complex event processing, real-time decision making, and

visualization. This architecture is instantiated by a real use case

from the traffic management domain. In the future, the results of

actual implementations of the use case will help us revise and

refine the proposed architecture.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General – System

architectures; D.4.8 [Operating Systems]: Performance -

Modeling and prediction; G.3 [Mathematics of Computing]:

Probability and Statistics - Distribution functions, Time series

analysis; H.1.2 [Models and Principles]: User/Machine Systems

– Human factors; I.2.3 [Artificial Intelligence]: Deduction and

Theorem Proving - Uncertainty, fuzzy, and probabilistic

reasoning.

General Terms

Performance, Design, Human Factors

Keywords

Proactive computing, event-driven, real-time optimization,

forecasting, uncertain and future events, visualization.

1. INTRODUCTION
Proactive Event-Driven Computing is a new paradigm

(‎[6],‎[7], ‎[9]), where a decision is neither made due to explicit

users' requests nor as a response to past events, but is

autonomously triggered by forecasting future states, either desired

or undesired. The decisions and actions are often real-time in the

sense that they are done under time constraints and require the

exploitation of large amounts of historical and streaming data. The

underlying motivation of proactive computing stems from social

and economic factors, and is based on the fact that prevention is

often more effective than cure.

Achieving this vision requires novel research in three different

directions:

Dealing with large quantities of data. Massive volumes of

historical data and massive streaming data have to be analyzed to

forecast events. Most systems are not capable of handling big

data in real-time because of scalability problems, the need to

cleanse noisy data offline, or the difficulty in fusing different

types of data coming from different sources online. The result is

that most analyses are done on offline data, while online data is

not leveraged for immediate operational decisions.

Extending the state-of-the-art in event processing to deal with

future events and uncertainty due to incomplete and noisy

streaming data ‎[1]. The ability to process past events and forecast

future ones makes proactive systems a compelling application

area. But, the uncertain nature of future events requires a major

leap in event processing systems.

Devising methods for making near-optimal decision within time

constraints. The decision about which is the best action to take in

proactive computing has two properties that differ from most

contemporary decision support systems: (1) the decision should be

taken on-line and under real-time constraints, which may dictate

the use of approximation techniques and (2) The decision often

entails autonomic actions, rather than providing only

recommendations for human decision makers.

A proactive-driven architecture should satisfy the requirements

above and provide an integrated platform that combines advanced

event processing with dynamic forecasting capabilities leveraged

towards online optimisation and decision-making. The proposed

architecture presented in this paper, an outcome of the SPEEDD

(Scalable ProactivE Event-Driven Decision making) project1,

exactly addresses this.

This paper is organized as follows: Section ‎2 briefly introduces

the traffic management use case that will illustrate our proposed

architecture. Section ‎3 presents a general overview of a proactive

event-driven architecture, while Section ‎4 details the SPEEDD

proactive event-driven architecture. We survey some related work

in Section ‎5. We conclude the paper in Section ‎6.

2. ILLUSTRATIVE EXAMPLE
Proactive traffic management concerns the south ring of

Grenoble, which is the main West to East artery around the city in

France and a primary source for traffic congestion. The goal

within this use case is to forecast traffic congestion before it

1 http://speedd-project.eu

(c) 2015, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2015 Joint Conference (March 27,
2015, Brussels, Belgium) on CEUR-WS.org (ISSN 1613-0073).

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

http://speedd-project.eu/

happens and, as a result, automatically act in order to attenuate it.

This is done by forecasting traffic congestions a few minutes

before they happen, and making decisions within a few seconds of

the forecast about adjustment of traffic light settings and speed

limits.

There are two sources of data in this use case: real data from

sensors and synthetic data generated by a micro-simulator.

The input data (raw events) comes from 130 magnetic wireless

Sensys sensors2 buried in the road along the highway which can

provide individual or aggregated data. Sensors are located in 19

collection points. Each collection point has a sensor per lane (slow

and fast lane) and, where applicable, also has sensors on the

on/off-ramps. Sensors provide data every 15 seconds. Such data

can be either individual (concerning every single vehicle), or

aggregated (over the 15-seconds time span). However, the

individual and aggregated data cannot be collected

simultaneously. Currently, aggregated data is being collected.

The simulator used for generating synthetic traffic data is the

commercial micro-simulator by Aimsun3. The simulator has been

calibrated using real traffic data from Grenoble South Ring.

3. PROACTIVE EVENT-DRIVEN

ARCHITECTURE
Conceptually, we distinguish between the design time and runtime

components.

At the build or design time, proactive applications are developed

using authoring tools either directly by experts or with the help of

learning systems. Visualization tools can be used to analyze the

stored historical data during design time. By using the authoring

and visualization tools, the experts may also annotate the

historical data, in order to provide training examples for the

machine learning algorithms. The products of the design time

activities are event processing definitions and decision making

configurations that will be deployed and executed at the runtime.

The runtime consists of four building blocks or components: event

processing, forecasting, real-time decision making, and

visualization tools. In general, raw events emitted by various

event sources (e.g., traffic sensors) are processed by the complex

event processing (CEP) engine and forecasted events serve for

real-time decision making. The CEP engine processes raw as well

as derived (detected and forecasted) events to detect and forecast

higher-level events, or situations. These serve as triggers for the

decision making component, which uses domain-specific

algorithms to suggest the next best action to resolve or prevent an

undesired situation.

Let’s examine in more details the principles of each building

block in the envisaged architecture:

The first building block required to facilitate proactive event

driven computing is a new kind of event processing component.

Event processing is an approach to software systems that is based

on reaction to events, often under time constraints. It includes

specific logic to filter, transform, or detect complex events and

patterns in events as they occur ‎[8]. The CEP component needs to

be extended to cope with detecting and forecasting derived events

under uncertainty.

2 http://www.sensysnetworks.com

3 http://www.aimsun.com/wp

The second building block facilitates event recognition and

forecasting, that is, identifying events that either have occurred or

are likely to occur in the near future. This is a key enabler of

proactive computing, allowing decision-making to commence

even before an event has been (completely) detected. This

building block continuously refines event recognition and

forecasting given the incoming, possibly noisy, data streams, in

order to improve the recognition accuracy and probability

estimations. Recognition and forecasting exploit models that can

be created by human experts or through goal-driven supervised

learning that exploits offline data available to the organization, or

a combination thereof. A particularly challenging aspect of event

forecasting is the temporal dimension. To facilitate precisely-

informed online decision-making, forecasting should indicate not

only which event will happen and with what probability, but also

when it is expected to happen; more generally, forecasting should

provide a probability distribution over the expected occurrence

time.

The third building block enables the event-based real-time

decision making under uncertainty. In order to realize proactivity

and support autonomous or semi-autonomous decision-making, a

body of tools is required that can exploit the forecast models and

state predictions as a basis for decision-making. These tools will

have to properly consider the nature and degree of uncertainty in

the models’ forecasts when generating decisions.

The forth building block, the visualization component (or

dashboard) supports the human interpretation of decisions made

in runtime. It facilitates decision making process for business

users by providing easily comprehensible visualization of detected

or forecasted situations along with output of the automatic

decision making component – a list of suggested actions to deal

with the situation. The proposed architecture can be run in open,

closed, or hybrid loop mode. In case of the open loop, the user can

approve, reject, or modify the action proposed by the automatic

decision maker. The closed loop operation does not require user’s

approval, the action is performed automatically. A hybrid mode

where some types of actions are taken automatically while other

types require human attention is also supported.

With the quantity of events, the volume of historical data, and the

complexity of applications all growing fast, it is vital that the

proposed architecture also exhibit scalable behavior. Scalability

has several dimensions, including scalability in streaming events,

scalability in volume of historical data, scalability in amount of

data sources and sinks, scalability in amount of processing

elements, and scalability in terms of physical infrastructure.

4. SPEEDD ARCHITECTURE
In the scope of the SPEEDD project a proactive event-driven

architecture has been proposed ‎[10] that follows the conceptual

architecture presented in Section ‎3 and consists of all the building

blocks introduced. In the following sections we describe this

architecture using the traffic management scenario.

4.1 System Requirements
The requirements for the current prototype are derived from the

traffic management use case. The detailed requirements can be

found in ‎[2].

The prototype should provide authoring tools that could be

applied to the historic data in order to derive event pattern

definitions and decision models to be deployed in runtime, as well

as a scalable runtime system capable of detecting and predicting

http://www.sensysnetworks.com/
http://www.aimsun.com/wp

important situations (traffic conditions) and issuing automatic

actions aimed at preventing undesired situations (congestions).

For the traffic management scenario, the projected throughput is

2000 sensor readings per second (computed based on the amount

of sensors and the report frequency, assuming aggregated readings

sent every 15 seconds by each of the 130 Sensys sensors installed

along the Grenoble South Ring).

In terms of integration with external systems the following is

required:

 Replay historic events from text files or a database.

 Receive sensor reading messages generated by the

micro-simulator.

 Provide a mechanism to log output events and actions to

a log for subsequent research.

 Provide a mechanism to connect to the traffic micro-

simulator for updating the simulator configuration –

action simulation.

4.2 SPEEDD Runtime Architecture
The architecture of the runtime part of SPEEDD follows the

Event-Driven Architecture paradigm ‎[12]. This approach

facilitates building loosely coupled highly composable systems, as

well as provides close alignment with the real world problems,

including our representative use case. Every component functions

as an event consumer, or an event producer, or a combination of

both. The event bus plays a central role in facilitating inter-

component communication which is done via events. Figure 1

shows the event-driven architecture for SPEEDD where the

runtime part is represented as a group of loosely-coupled

components interacting through events. The event bus serves as

the communication and integration platform for SPEEDD

runtime.

Input from the operational systems (traffic sensor readings) are

represented as events and injected into the system by posting a

new event message to the event bus. These events are consumed

by the CEP runtime. The derived events representing detected or

forecasted situations that CEP component outputs are posted to

the event bus as well. The decision making module listens to these

events so that the decision making procedure is triggered upon a

new event representing a situation that requires a decision. The

output of the decision making represents the action to be taken to

mitigate or resolve the situation. These actions are posted as

action events. The visualization component consumes events

coming from two sources: the situations (detected as well as

forecasted) and the corresponding actions suggested by the

automatic decision components. Architecturally, there is no

difference between these two – both are events that the dashboard

is ‘subscribed to’, although having different semantics and

presented and handled differently. The user can accept the

suggested action as is, modify the suggested action’s parameters,

or reject it (and even decide upon a different action). In the case

where an action is to be performed, the resulting action will be

sent as a new event to the event bus so that the corresponding

actuators are notified.

Specifically, Figure 2 shows the SPEEDD runtime architecture for

the traffic management use case, including the technology

platforms used to implement the architecture. In the following

subsections we describe the details of the runtime architecture

including the design of each component and its technology

implementation.

4.2.1 Event Bus

The technology chosen for the event bus component is Apache

Kafka ‎[16]. It provides a scalable, performant, and robust

messaging platform that matches SPEEDD requirements. To

implement routing of the events to event consumers we build

upon the topic-based routing mechanism provided by Kafka.

To allow scalable processing of massive stream of messages at

high throughput, Kafka provides the partitioning mechanism.

Every topic can be partitioned into multiple streams that can be

processed in parallel, while every partition can be managed in a

separate machine. There may be more than one replica for every

partition, thus providing resilience in case of failures.

In SPEEDD we exploit Kafka partitioning to build a scalable and

fault-tolerant event bus. The topic that receives the biggest

incoming traffic is speedd-in-events where all the input events are

sent. The decision about the partitioning mechanism to use is use-

case specific as we want to achieve nearly uniform distribution of

load over different partitions. Below, we describe the partitioning

approach for our use case, providing the rationale for the design

decisions. It is important to mention, though, that we may change

the final partitioning mechanism based on the performance

experiments on real and simulated data. We will be able to do that

at any stage of the project development, thanks to the highly

extensible and customizable partitioning framework that Kafka

provides.

Figure 1. SPEEDD Event-Driven Architecture

Figure 2. SPEEDD Runtime Event-Driven Architecture (Traffic Use Case)

4.2.1.1 Partitioning for the Traffic Use Case

Assuming that we get relatively equal amount of events produced

by every sensor, we could partition sensor reading events based

on the sensor id. This should result in uniform distribution of the

messages to partitions, which provides horizontal scalability of

the topic.

4.2.1.2 Ordering of events

Kafka guarantees that the order of events submitted to a topic’s

partition is preserved within same partition – the consumers will

receive them in the same order. However, the order is not

guaranteed across partitions. In our case, this should not be an

issue because the CEP component takes care of the out-of-order

events as long as the delay between the event and its preceding

event that arrives after that event is not too long – this assumption

should be valid with Kafka.

4.2.1.3 Storm-Kafka Integration

SPEEDD event processing and decision making components run

on top of Apache Storm ‎[25], a distributed scalable stream

processing infrastructure.

Integration between Storm streaming platform and our Kafka-

based event bus is done based on the Storm-Kafka-Plus project4.

Storm-Kafka-Plus provides two building blocks. KafkaSpout

listens on a Kafka topic and creates a stream of the tuples.

KafkaBolt posts incoming tuples to a configured topic. There is an

extensible mechanism for serialization and deserialization of

tuples to messages and vice versa.

4.2.2 Event/Data Providers
Event providers provide the input interface of SPEEDD runtime

with the external world. Every event that occurs in the external

4 https://github.com/wurstmeister/storm-kafka-0.8-plus

world that should be taken into account by SPEEDD to detect or

predict an important business situation should be sent to the

speedd-in-events topic on the event bus as a message representing

the event.

As it is illustrated in Figure 2, events for the traffic use case may

come from traffic sensors (magnetic wireless Sensys sensors

buried in the road), micro-simulator (synthetically generated

data), as well as historic data (collected data from sensors).

To enable processing of events generated by any of the above

sources, a connector should be developed. The connector uses

source-specific integration mechanism to read the data from the

event sources and send them to SPEEDD event bus using Kafka

producer API.

We define three connector types corresponding to the types of the

event sources, that is, file-reader (replay past events from a file)

sensor, and micro-simulator connectors.

4.2.3 Action Consumption – Actuators/Connectors
The outcomes of SPEEDD are actions that should be applied in

the operational environment to resolve a problem or prevent a

potential problem. According to the event-driven architecture

principles, actions are represented as outbound events and are

available to every interested party to receive and process them.

The actuators connectors are interface points in SPEEDD

architecture responsible for listening to the speedd-actions-

confirmed topic for new actions and connect to operational

systems to execute respective operations.

As it is not planned to connect SPEEDD prototype to the traffic

operational systems running in production mode, the

detectdecideact loop will be implemented and tested using

the AIMSUN micro-simulator ‎[2]. The traffic actuator connector

will listen to the outbound action events (speedd-actions-

confirmed topic on the event bus) and execute operations

supported by the micro-simulator, e.g., update speed limits, set

ramp metering rates, etc. The integration with the event bus for

actuators is based on the Kafka consumer API.

https://github.com/wurstmeister/storm-kafka-0.8-plus

4.2.4 Complex event processing component
The main role of the CEP component is to detect events and

derive situations to feed the decision module, so proactive actions

can be taken. To this end, the CEP component needs to deal with

uncertainty in the input, as well as the output events.

We use the IBM Proactive Technology Online (Proton) research

asset as the CEP engine in SPEEDD. This engine has been

released as open source as an outcome of the FI-WARE project5

and it is extended to cope with predictive capabilities in the scope

of the SPEEDD project.

Proton receives raw events, and by applying patterns defined

within a context on those events (we follow the terminology

in ‎[8]), computes and emits situations (derived events emitted to

consumers). Proton is platform-independent, as it is implemented

in Java. The architecture is modular and consists of the following

components:

Adapters – communication of Proton with external systems

Parallelizing agent-context queues – for parallelization of

processing of single event instance, participating in multiple

patterns/contexts, and parallelization of processing among

multiple event instances.

Context service – for managing of context’s lifecycle – initiation

of new context partitions, termination of partitions based on

events/timers, segmenting incoming events into context groups

which should be processed together.

EPA manager – for managing Event Processing Agent (EPA)

instances per context partition, managing its state, pattern

matching, and event derivation based on that state.

SPEEDD will take advantage of the adaptation of the standalone

architecture of Proton to a distributed architecture done in the

scope of the FERARI FP7 EU project6, and will apply the Proton

on Storm version of the engine. It is important to note that, while

Storm offers an open programming model so developers can add

the logic to address complex event driven applications, the

resulting implementation is custom to a single application and not

a generic re-usable solution. Furthermore, the inclusion of

uncertainty requires additional specific coding to deal with. In the

architecture proposed, we make use of a generic event processing

system that provides the necessary building blocks to build

generic event driven applications with the presence of uncertainty.

The Proton architecture on top of Storm preserves the same

logical components as are present in the standalone architecture:

the queues, the context service and the EPA manager, which

constitutes the heart of the event processing system. However the

orchestration of the flow between the components is a bit

different, and utilizes existing Storm primitives for streaming the

events to/from external systems, and for segmenting the event

stream.

4.2.5 Decision making component
As aforementioned, the aim of the real-time decision making

building block is to provide a body of proactive event-driven

decision-making tools, which exploit the detected or forecasted

events of the CEP. The Decision Making (DM) module receives

as inputs the detected, derived, and forecasted events and emits

control actions or appropriate suggestions. Therefore, it functions

5 https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/

index.php/FI-WARE_Architecture

6 http://www.ferari-project.eu

both as an event consumer and as an event producer at the same

time.

In this sense, decision making is the task of finding the optimal

response to a specific situation, which is described by the detected

or forecasted events. It is naturally represented as a parametric

optimization problem. The main task of decision making is to

solve this optimization problem, which can be accomplished in

two conceptually different ways:

The parametric optimization problem is solved offline such that

an explicit solution is obtained. Note that this is a “difficult" task,

since an optimal answer to any situation that might arise during

operation needs to be computed. If such an explicit solution can

be obtained, it takes the form of a feedback rule, e.g. a linear

controller K(s) or state feedback - K*x. Therefore, it can be

efficiently implemented in a unified architecture using the existing

SPEEDD components (e.g., as a Storm Bolt).

The construction of an explicit solution may be computationally

intractable for certain problems. In such a case, the solution to

multiple distinct instances of the optimization problem needs to be

computed at runtime. In contrast to the first case, in which only

the evaluation of a feedback rule is required, the algorithmic

solution of an optimization problem is not trivial and it is not

tractable to solve such a problem within the stream processing

environment adopted in SPEEDD (Storm). We, therefore, assume

the existence of a use-case specific “optimization black-box”

outside the actual SPEEDD framework, which can be queried

whenever such a decision is required.

In our illustrative example of freeway ramp-metering (regulating

the traffic inflow on a freeway in order to maximize throughput),

a low-level ramp metering controller receives measurements of

the local traffic density and the local traffic flows, as well as

notifications about detected or predicted congestion queues. It

then emits a recommendation to change the ramp metering rates

accordingly. For a network of interaction freeways, a network-

wide planning algorithm can be used for coordination purposes,

implemented as an external oracle that can be queried.

Since a road network is naturally a spatially distributed system,

the architecture of the decision-making module reflects this

structure. Specifically, the module is directly and efficiently

implemented as Storm bolts in a distributed manner. Preliminary

theoretical results suggest that such local controllers may perform

asymptotically optimal with regard to flow maximization for a

single freeway; however, coordination is required to achieve

optimal operation of more complex road networks. Network-wide

planning can be superimposed by querying an external black-box.

4.2.6 Dashboard component
As aforementioned, the proposed event-driven architecture can be

run in an open, closed, or hybrid loop mode. In the traffic

management use case we only deal with open or hybrid modes,

i.e., we don’t have fully automatic actuators for the decisions. The

closed mode implies connecting the SPEEDD prototype to the

actual production systems and, therefore, out of the scope of the

project.

In our current scenario, operators interact with the outputs of the

SPEEDD modules through a User Interface (UI). The Dashboard

Client communicates, via the Dashboard Server, with the

composite systems in the SPEEDD architecture. Operators can

accept, respond to, or make suggestions and control actions.

Actions taken by operators via the UI are fed back into the

SPEEDD runtime as events, thus allowing for the seamless

https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture
https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_Architecture
http://www.ferari-project.eu/

integration of expert knowledge and the outputs of complex

algorithms.

The Dashboard Server component is based on Node.js ‎[24]

asynchronous programming framework. The server functions as a

Kafka consumer and producer. The consumer listens for

broadcasted messages in the Event Bus under the following

topics: speedd-out-events and speedd-actions. The producer

broadcasts messages under the topic speedd-actions-confirmed

(see section ‎4.2.1)

The Dashboard Client is designed to provide the user with a clear

picture of the current state of the world. It achieves the picture of

the current state by aggregating sensor readings in human

readable form, current states of the control equipment available

(e.g., speed limit signs, message signs, lanes), current events

identified by the CEP module, and displays of the automated

control events produced by the DM unit (e.g., ramp metering

rates). Furthermore, it aims to support the decision-maker by

highlighting events which might require attention along with

corresponding suggested mitigating strategies.

4.3 SPEEDD Design Time Architecture
In general, there exist two methods to define the rule patterns for a

CEP application: machine learning and experts. In the first, the

patterns are learnt automatically by a computer program, while in

the second, they are given by an external entity; usually a subject

expert matter specialized in the domain. It is also possible to

combine between these two methods.

Historic data used at design time contains raw events reported

during the observed period along with annotations provided by

domain experts. These annotations mark important situations that

have been observed in the past and should be detected

automatically in the future. Domain experts can apply tools and

methodologies provided by SPEEDD authoring toolkit to extract

derived event definitions from the annotated event history. This is

a semi-automatic process involving applying machine learning

tools to extract initial set of patterns, then further enhanced and

translated with help of the domain experts into deployable CEP

artefacts.

Due to the dynamic nature of the proactive traffic management

application, the knowledge base of event pattern definitions may

require to be refined or enhanced with new ones. Manual creation

of event definitions is often a tedious and cumbersome process,

thus we employ machine learning techniques to semi-

automatically create event pattern definitions by analyzing

historical data.

We employ the Probabilistic Event Calculus ‎[23] that combines

temporal logic-based formalization with probabilistic modelling.

The logic-based representation allows to compactly define

relations between events and incorporate existing domain

knowledge, while probabilistic modelling allows to naturally

handle uncertainty. For the implementation of the machine

learning algorithms, we extend the open-source framework

LoMRF7 with state-of-the-art scalable probabilistic inference and

incremental learning methods ‎[14]. LoMRF is developed in

Scala8, which compiles to Java bytecode and thus works

seamlessly with any other Java-based framework.

7 https://github.com/anskarl/LoMRF

8 http://www.scala-lang.org

Additionally, for scalability LoMRF employs the high-

performance parallel processing framework of Akka Actors9.

The resulting output of the machine learning algorithms is

composed of a set of text-formatted files that contain the event

pattern definitions. Thereafter, the resulting rules are parsed by

the "rtec2proton" translator and converted semi-automatically to

JSON formatted Proton EPN definitions. All EPN definitions are

then reviewed and manually refined by domain experts using

Proton's authoring tool. The output of this process is a JSON file

containing the EPN definition.

5. RELATED WORK
Proactive applications have been developed in an ad-hoc manner

for several years; some examples include proactive security

systems ‎[5], proactive routing in mobile ad-hoc wireless ‎[17],

proactive network management with failure handling ‎[11],

proactive service level agreement negotiation in service oriented

systems ‎‎[18], proactive caching ‎‎[15], and proactive management

in logistic processes ‎‎[19] and ‎[9]. However, the lack of a generic

paradigm to develop proactive event-driven applications makes it

difficult for this capability to spread.

One of the main ingredients for proactive event driven computing

is the ability to deal with uncertainty in the events. Despite

uncertainty handling has been recognized as one of the most

critical and relevant aspects in the area of CEP, it still remains an

open issue ‎[1]. Only a few solutions have been proposed, and

most of them are tailored to a specific application domain ‎[4].

Examples of previous works can be found

in ‎[4], ‎[20], ‎[22], ‎[26], ‎[27] and ‎[28]. Existing CEP approaches

examine three major types of uncertainty that may be present in

the events that are fed in a CEP system: uncertainty in event

content, in the event occurrence, and in the rules. Our CEP

component must support these three types. Furthermore, learning

event rules in the presence of uncertainty is also an open research

area ‎[1].

In terms of real-time optimization techniques, the state-of-the-art

is that optimization techniques are being activated mostly off-line

and use a variety of optimization methods that fit different

assumptions: robust (worst-case) optimization, stochastic

optimization, and optimization methods based on black-box

models (e.g., ‎[3], ‎[13] and ‎[21]). Our main challenge is to develop

real-time proactive planning tools for proactive applications using

these optimization methods within an event-based planning

framework.

6. SUMMARY AND FUTURE WORK
Event-driven architecture is a software architecture pattern

promoting the production, detection, consumption of, and reaction

to events. We describe how we extended this architecture from

being reactive to proactive, by incorporating capabilities for

forecasting and real-time decision making.

The proposed architecture is instantiated by a real use case from

the traffic management domain. Although driven by the use case

requirements in the SPEEDD project, the proposed architecture is

generic and can be applied to any domain that requires proactive

event-driven computing.

We are currently working on a first implementation of the use

case based on the proposed architecture. Future work includes

integration of offline historic data and online streaming data as

9 http://akka.io

https://github.com/anskarl/LoMRF
http://www.scala-lang.org/
http://akka.io/

well as refinements to the proposed architecture as result of the

implementation.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding from

the European Union's Seventh Framework Programme FP7/2007-

2013 under grant agreement 619435 (SPEEDD).

8. REFERENCES
[1] Artikis A., Etzion O., Feldman Z., and Fournier F. 2012.

Event Processing under Uncertainty. In Proceedings of the

sixth ACM conference on Distributed Event-Based Systems

(DEBS’12).

[2] Baber C., Bellicot I., Canudas de Wit C., Cooke N., Garin

F., Grandinetti P., Hempel A., Kibangou A., Morbidi F., and

Schmitt. M. User requirements and scenario definition.

Accessible at http://www.speedd-project.eu/sites/default/

files/D8.1-UserRequirements_final.pdf

[3] Ben-Tal, A., Boyd, S., and Nemirovski. A. 2006. Extending

Scope of Robust Optimization: Comprehensive Robust

Counterparts of Uncertain Problems. Mathematical

Programming, 107:1-2, 63-89.

[4] Cugola G., Margara A., Matteucci M., and Tamburrelli G.

2014. Introducing uncertainty in complex event processing:

model, implementation, and validation. Computing 1–42.

[5] Dolev S., Kopeetsky M., and Shamir A. 2011. RFID

Authentication Efficient Proactive Information Security

within Computational Security. Theory of Computing

Systems, 1-18.

[6] Engel Y., Etzion O., and Feldman Z. 2012. A Basic Model

for Proactive Event-Driven Computing. In Proceedings of

the sixth ACM conference on Distributed Event Based

Systems (DEBS’12).

[7] Engel Y. and Etzion O. 2011. Towards proactive event-

driven computing. In Proceedings of the fifth ACM

conference on Distributed Event Based systems (DEBS’11).

[8] Etzion O. and Niblett P. 2010. Event Processing in Action.

Manning Publication.

[9] Feldman Z., Fournier F., Franklin R., and Metzger A. 2013.

Proactive event processing in action: A case study on the

proactive management of transport processes, in Proceedings

of the Seventh ACM International Conference on Distributed

Event-Based Systems (DEBS’13).

[10] Fournier F., Kofman A., Morar N., Schmitt M., Skarbovsky

I., and Skarlatidis A. 2014. The Architecture Design of the

SPEEDD Prototype. Accessible at http://www.speedd-

project.eu/sites/default/files/D6.1-

Architecture_Design_of_SPEEDD_Prototype-v1.0a.pdf

[11] Fu S. and Xu C.Z. 2007. Exploring event correlation for

failure prediction in coalitions of clusters. In Proceedings of

the 2007 ACM/IEEE Conference on Supercomputing

(SC’07), 1-12.

[12] Hohpe G. Programming without a call stack – Event-driven

Architecture. 2006, [Online], at:

http://www.eaipatterns.com/docs/EDA.pdf

[13] Hokayem P., Chinquemani E., Chaterjee D., Ramponi F., and

Lygeros J. 2012. Stochastic receding horizon control with

output feedback and bounded controls. Journal Automatica,

48, 1, 77-88.

[14] Huynh, T. N., & Mooney, R. J. 2011. Online structure

learning for markov logic networks. In Machine Learning

and Knowledge Discovery in Databases, 81-96.

[15] Kohler M. and Fies R. 2009. ProActive Caching-A

Framework for Performance Optimized Access Control

Evaluations. In Proceedings of IEEE International

Symposium on Policies for Distributed Systems and

Networks (POLICY 2009).

[16] Kreps, J., Narkhede N., and Rao J. 2011. Kafka: A

distributed messaging system for log processing. In

Proceedings of the 6th International Workshop on

Networking Meets Databases (NetDB).

[17] Kunz T. and Alhalimi R. 2010. Energy-efficient proactive

routing in MANET: Energy metrics accuracy. Ad Hoc

Networks, 8(7), 755-766.

[18] Mahbub K. and Spanoudakis G. 2010. Proactive SLA

Negotiation for Service Based Systems. In Proceedings of

the 6th World Congress on Services (SERVICES-1).

[19] Metzger A., Franklin R., and Engel Y. 2012. Predictive

monitoring of heterogeneous service-oriented business

networks: The transport and logistics case. In Proceedings of

the Annual SRII Global Conference (SRII), 313-322.

[20] Ré C., Letchner J., Balazinksa M., and Suciu D. 2008. Event

queries on correlated probabilistic streams. In Proceedings of

the 2008 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’08), 715–728.

[21] Shapiro, A. 2008. Stochastic programming approach to

optimization under uncertainty. Mathematical Programming,

112.

[22] Shen Z., Kawashima H., and Kitagama H. 2008. Probabilistic

event stream processing with lineage. In Proceedings of Data

Engineering Workshop (DEWS’ 08).

[23] Skarlatidis A., Paliouras G., Artikis A. and Vouros G. 2014.

Probabilistic Event Calculus for Event Recognition. ACM

Transactions on Computational Logic (TOCL), to appear.

[24] Tilkov S. and Vinoski S. 2010. Node.js: Using JavaScript to

Build High-Performance Network Programs. IEEE Internet

Computing 14(6), 80-83.

[25] Toshniwal, A., Taneja S., Shukla A., Ramasamy K., Patel J.

M., Kulkarni S., Jackson J., et al. 2014. Storm@twitter. In

Proceeding of the 2014 ACM SIGMOD international

conference on Management of data (SIGMOD '14), 147-156

[26] Wasserkrug S, Gal A., Etzion O., and Turchin Y. 2012.

Efficient processing of uncertain events in rule-based

systems. IEEE Transactions on Knowledge and Data

Engineering, 24(1), 45–58.

[27] Wasserkrug S., Gal A., Etzion O., and Turchin Y. 2008.

Complex event processing over uncertain data. In

Proceedings of the Second ACM conference on Distributed

Event-Based Systems (DEBS ’08), 253–264.

[28] Zhang H., Diao Y., and Immerman N. 2010. Recognizing

patterns in streams with imprecise timestamps. Proc. VLDB

Endowment, 3(1-2), 244–255.

http://www.speedd-project.eu/sites/default/files/D8.1-UserRequirements_final.pdf
http://www.speedd-project.eu/sites/default/files/D8.1-UserRequirements_final.pdf
http://www.speedd-project.eu/sites/default/files/D6.1-Architecture_Design_of_SPEEDD_Prototype-v1.0a.pdf
http://www.speedd-project.eu/sites/default/files/D6.1-Architecture_Design_of_SPEEDD_Prototype-v1.0a.pdf
http://www.speedd-project.eu/sites/default/files/D6.1-Architecture_Design_of_SPEEDD_Prototype-v1.0a.pdf
http://www.eaipatterns.com/docs/EDA.pdf

