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Complex Event Recognition applications exhibit various types of uncertainty, ranging from incomplete and
erroneous data streams to imperfect complex event patterns.We review Complex Event Recognition techniques
that handle, to some extent, uncertainty. We examine techniques based on automata, probabilistic graphical
models and first-order logic, which are the most common ones, and approaches based on Petri Nets and
Grammars, which are less frequently used. A number of limitations are identified with respect to the employed
languages, their probabilistic models and their performance, as compared to the purely deterministic cases.
Based on those limitations, we highlight promising directions for future work.
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1 INTRODUCTION
Systems for complex event pattern matching, or Complex Event Recognition (CER), accept as input
a stream of time-stamped, simple, derived events (SDE)s. A SDE (low–level event) is the result of
applying a computational derivation process to some other event, such as an event coming from a
sensor. Using SDEs as input, CER systems identify complex events (CE)s of interest– collections of
events that satisfy some pattern [11]. The definition of a CE (high–level event) imposes temporal
and, possibly, atemporal constraints on its sub-events (SDEs or other CEs). Consider, for example,
the recognition of attacks on computer network nodes, given the TCP/IP messages. A CER system
attempting to detect a Denial of Service attack has to identify (as one possible scenario) both a
forged IP address that fails to respond and that the rate of requests is unusually high. In maritime
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monitoring, in order to detect an instance of illegal fishing, a CER system has to perform both
some geospatial tasks, such as estimating whether a vessel is moving inside a protected area, and
temporal ones, like determining whether a vessel spent a significant amount of time in this area. In
this sense, CER is one of the functionalities of Complex Event Processing.

The SDEs arriving at a CER system almost always carry a certain degree of uncertainty and/or
ambiguity. Information sources might be heterogeneous, with data of different schemas, they might
fail to respond or even send corrupt data. Even if we assume perfectly accurate sensors, the domain
under study might be difficult or impossible to model precisely, thereby leading to another type of
uncertainty. Until recently, most CER systems did not make any effort to handle uncertainty (it is
instructive to see the relevant discussion about uncertainty in [20]). This need is gradually being
acknowledged and it seems that this might constitute a major line of research and development for
CER.
The purpose of this paper is to present an overview of existing approaches for CER under

uncertainty. Since this field is relatively new, without a substantial number of contributions coming
from researchers directly involved with CER, we have chosen to adopt a broader perspective
and include methods targeting activity recognition and scene understanding on image sequences
coming from video sources. Although activity recognition is a field with its own requirements,
it is related closely enough to CER so that some of the ideas and methods applied there might
provide inspiration to CER researchers as well. However, it is not our intention to present a survey
of video recognition methods and we have selectively chosen those among them that we believe
are closer to CER, excluding those that rely on numerical approaches, such as [42] (for a survey
of activity recognition methods from video sources, see [87]). We have used two basic criteria for
our choice (applied to the CER methods as well). First, we require that the method employs some
kind of relational formalism to describe activities, since purely propositional approaches are not
sufficient for CER. Second, we require that uncertainty be handled within a probabilistic framework,
since this is a framework that provides clear and formal semantics. In this respect, our work is
related to previously conducted comparisons within the field of statistical relational learning, both
theoretical [22, 38, 60] and practical [16]. The related field of query processing over uncertain data
in probabilistic databases/streams is covered in other surveys (e.g., [88]) and, therefore, we will not
include such papers in our survey.

Throughout the remainder of the paper, we are going to use a running example in order to assess
the presented approaches against a common domain. Our example comes from the domain of video
recognition. We assume that a CER engine receives as input a set of time-stamped events, derived
from cameras recording a basketball game. However, we need to stress that our input events are
not composed of raw images/frames and that the task of the CER engine is not to perform image
processing. We assume availability of algorithms that can perform the corresponding tasks, such
as object recognition and tracking. Therefore, our SDEs consist of events referring to objects and
persons, like walking, running and dribbling. The purpose is to define patterns for the recognition of
some high-level long-term activities, e.g., that a matchup between two players or a double-teaming
is taking place.

The structure of the paper is as follows: Section 2 discusses briefly the types of uncertainty that
may be encountered in a CER application. In Section 3 we present certain criteria based on which
we included (or excluded) papers from our survey and in Section 4 we discuss the dimensions
along which a proposed solution for handling uncertainty may be evaluated. Section 5 presents the
reviewed approaches. Finally, Section 6 summarizes them in a tabular form and comments on their
limitations. Some open issues and lines of potential future work are also identified.
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2 UNCERTAINTY IN EVENT RECOGNITION
Understanding uncertainty in its different types is crucial for any CER system that aspires to
provide an efficient way of handling it. The ideal CER system would be capable of handling all
types of uncertainty within a unified and mathematically rigorous framework. However, this is not
always possible and the current CER systems are still far from achieving such an ideal. Different
domains might be susceptible to different types of uncertainty, while different CER engines employ
various methods for responding to it, ranging from the ones that simply ignore it to those that use
highly complex, fully-fledged, probabilistic networks. In this section, we give a brief description
and classification of the various types of uncertainty that may be encountered by a CER system.
For further discussion, see [8, 9, 90].

2.1 Data Uncertainty
The event streams that provide the input data to a CER engine can exhibit various types of
uncertainty. One such type is that of incomplete or missing evidence. A sensor may fail to report
certain events, for example due to some hardware malfunction. Even if the hardware infrastructure
works as expected, certain characteristics of the monitored environment could prevent events from
being recorded, e.g. an occluded object in video monitoring or a voice being drowned by stronger
acoustic signals.

The events of the input stream may have a noise component added to them. In this case, events
may be accompanied by a probability value. There are many factors which can contribute to
the corruption of the input stream, such as the limited accuracy of sensors or distortion along
a communication channel. Another distinction which might be important in certain contexts is
that between stochastic and systematic noise, e.g. the video frames from a camera may exhibit a
systematic noise component, due to different light conditions throughout the day.

When noise corrupts the input event stream, a CER system might find itself in a position where
it receives events asserting contradictory statements. For example, in a computer vision application
which needs to track objects, such as that of our running example, if there are multiple software
classifiers, one of them may assert the presence of an object (e.g., the ball) whereas another may
indicate that no such object has been detected.
Finally, when a CER system needs to learn the structure and the parameters of a probabilistic

model from training data, quite often the data are inconsistently annotated. Therefore, the rules to
be learned have to incorporate this uncertainty and carry a confidence value.

2.2 Pattern Uncertainty
Besides the uncertainty present in the input data, a noise-tolerant CER system should also be able
to handle cases where the event patterns are not precise or complete. Due to lack of knowledge or
due to the inherent complexity of a domain, it is sometimes impossible to capture exactly all the
conditions that a pattern should satisfy. It might also be preferable and less costly to provide a more
general definition of a pattern which is easy to implement rather than trying to exactly determine
all of its conditions. A pattern with a wider scope, which does not have to check multiple conditions,
may also be more efficient to compute and, in some cases, this performance gain could be more
critical than accuracy. In both cases, we cannot infer an event with certainty and a mechanism is
required to quantify our confidence.

For example, a rule for determining when a team is attempting an offensive move in basketball
might be defined as a pattern in which one of the team’s players has the ball and all other players are
located in the opponent team’s half-court. However, the same pattern could also be satisfied when a
player is attempting a free throw or for an out-of-bounds play. Depending on our requirements, we
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might or might not want to include all of these instances as cases of offensive moves. Defining all
of these sub-cases would require more refined conditions, something which is not always possible.
Yet, we might be still interested in capturing this pattern and provide a confidence value.

3 SCOPE OF THE SURVEY
Before presenting our framework and evaluation dimensions, we explain the rationale behind our
choices and clarify some basic conceptual issues, which we deem important from the point of view
of CER.

3.1 Probabilistic models
A seemingly simple method to handle uncertainty is to ignore or remove noise through pre-
processing or filtering of the data, thus facilitating the use of a deterministic model. Other methods
are available as well, such as possibilistic reasoning, conflict resolution (accept data according to
the trustworthiness of a source) and fuzzy sets. For example, a logic-based method is proposed
in [75, 76], where logic programming and the Bilattice framework [33] are employed. Another
example is the work presented in [51], where the Dempster-Shafer theory is used in order to take
into account the trustworthiness of heterogeneous event sources. We focus on probabilistic models
because they provide a unified and rigorous framework and the bulk of research on CER under
uncertainty employs such models.

3.2 Time representation
As far as time is concerned, some approaches resort to an implicit representation, whereby time
slices depend on (some of) the previous slice(s), without taking into account time itself as a variable.
Useful as this solution might be in domains characterized by sequential patterns, there are cases in
CER where time constraints need to be explicitly stated. Although we include in our survey some
approaches with an implicit time representation, our focus will mostly be on methods with explicit
time representation.

3.3 Relational models
A substantial proportion of the existing probabilistic models are propositional by nature, as is the
case with many Probabilistic Graphical Models, such as simple Bayesian Networks. Probabilistic
graphical models have been successfully applied to a variety of CER tasks where a significant
amount of uncertainty exists. Especially within the machine vision community, they seem to be
one of the most frequently used approaches. Since CER requires the processing of streams of time-
stamped SDEs, numerous CER methods are based on sequential variants of probabilistic graphical
models, such as Hidden Markov Models [67] and their extensions (e.g., coupled [14], Dynamically
Multi-Linked [34] and logical Hidden Markov Models [41]), Dynamic Bayesian Networks [62] and
Conditional Random Fields [45].

As far as Hidden Markov Models are concerned, since they are generative models, they require an
elaborate process of extracting the correct independence assumptions and they perform inference
on the complete set of possible worlds. Moreover, their first-order nature imposes independence
assumptions with regard to the temporal sequence of events (with only the current and the
immediately previous states taken into account) that might not be realistic for all domains. On
the other hand, Conditional Random Fields are discriminative models, a feature which allows
them to avoid the explicit specification of all dependencies and, as a consequence, avoid imposing
non-realistic independence assumptions [49, 86, 95]. However, both Hidden Markov Models and
Conditional Random Fields assume a static domain of objects (with the exception of logical Hidden
Markov Models [41]), whereas a CER engine cannot make the same assumption, since it is not
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possible to determine beforehand all the possible objects that might appear in an input stream from
a dynamic and evolving environment. Additionally, the lack of a formal representation language
makes the definition of structured CEs (Complex Events) complicated and the use of background
knowledge very hard. From a CER perspective, these issues constitute a severe limitation, since
rules for detecting CEs often require relational and hierarchical structures, with complex temporal
and atemporal relationships. For these reasons, we do not discuss Hidden Markov Models and
Conditional Random Fields in a more detailed manner. Instead, we focus our investigation on
methods with relational models.

4 EVALUATION DIMENSIONS
In this section, we provide a general framework for the discussion of the different approaches and
establish a number of evaluation dimensions against which the strengths and weaknesses of each
method may be assessed. We follow the customary division between representation and inference.
As far as learning is concerned, although in general it is a very active research area within the
statistical relational learning community, we have decided not to include a detailed discussion
about the learning capabilities of the examined approaches in our survey. The reason is that very
few of the probabilistic CER systems deal with learning (these exceptions are mentioned in Section
5). Instead, we will try to draw some conclusions about the performance of each system, taking
into account the difficulties in making performance comparisons.

4.1 Representation
A simple unifying event algebra. We begin our discussion of representation by introducing a

basic notation for CER. For a more detailed discussion of the theory behind CER, we refer readers
to [19, 26, 50]. Following the terminology of [50], we define an event as an object in the form
of a tuple of data components, signifying an activity and holding certain relationships to other
events by time, causality and aggregation. An event with N attributes can be represented as
EventType(Attr1, . . . ,AttrN ,Time ), where Time might be a point, in case of an instantaneous event,
or an interval during which the event happens, if it is durative. Notice, however, that, when time-
points are used, some unintended semantics might be introduced, as discussed in [63]. For our
running example, events could be of the form EventType(PlayerName,UnixTime) and one such an
event could be the following: Running(Antetokounmpo,19873294673).
In CER, we are interested in detecting patterns of events among the streams of SDEs (Simple

Derived Events). Therefore, we need a language for expressing such patterns. Based on the capabil-
ities of existing CER systems and probabilistic CER methods, we adopt here a simple event algebra.
Formalisms for reasoning about events and time have appeared in the past, such as the Event
Calculus [10, 17, 44] and Allen’s Interval Algebra [6, 7], and have already been used for defining
event algebras (e.g., [64]). With the help of the theory of descriptive complexity, recent work has
also identified those constructs of an event algebra which strike a balance between expressive
power and complexity [97]. Our event algebra will be defined in a fashion similar to the above
mentioned efforts, borrowing mostly from [17, 97]. Below, we present the syntax of the event
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algebra:

ce ::= sde |

ce1 ; ce2 | Sequence
ce1 ∨ ce2 | Disjunction

ce∗ | Iteration
¬ ce | Negation

σθ (ce ) | Selection

πm (ce ) | Projection

[ce]T2T1 Windowing (from T1 to T2)

where σθ (ce (v1, . . . ,vn )) selects those ce whose variables vi satisfy the set of predicates θ and
πm (ce (a1, . . . ,an )) returns a ce whose attribute values are a possibly transformed subset of the
attribute values of ai of the initial ce , according to a set of mapping expressionsm.

The following list explains the above operations:

• Sequence: Two events following each other in time.
• Disjunction: Either of two events occurring, regardless of temporal relations. Conjunction
(both events occurring) may be expressed by combining Sequence and Disjunction.
• Iteration: An event occurring N times in sequence, where N ≥ 0. This operation is similar
to the Kleene star operation in regular expressions, the difference being that Kleene star is
unbounded.
• Negation: Absence of event occurrence.
• Selection: Select those events whose attributes satisfy a set of predicates/relations, temporal
or otherwise.
• Projection: Return an event whose attribute values are a possibly transformed subset of the
attribute values of its sub-events.
• Windowing: Evaluate the conditions of an event pattern within a specified time window.

The above syntax allows for the construction of event hierarchies, a crucial capability for every
CER system. Being able to define events at various levels and reuse those intermediate inferred
events in order to infer other, higher-level events is not trivial. Theoretically, every event language
could achieve this simply by embedding the patterns of lower-level events into those at higher levels,
wherever they are needed. However, this solution would result in long and contrived patterns and
would incur heavy performance costs, since intermediate eventswould need to be computedmultiple
times. Moreover, there are multiple ways a system could handle the propagation of probabilities
from low-level to high-level events and these differences can affect both the performance and the
accuracy of the system.

Probabilistic Data. The event algebra defined above is deterministic. We now extend it in order
to take uncertainty into account. As we have already discussed, we can have uncertainty both in
the data and the patterns. As far as data uncertainty is concerned, we might be uncertain about
both the occurrence of an event and about the values of its attributes. For example, the ProbLog2
system [29] employs annotated disjunctions. Therefore, for a probabilistic event, we could write
Prob :: EventType(Value1, . . . ,ValueN ,Time), which means that this event with these values for its
attributes might have occurred with probability Prob and not have occurred at all with probability
1−Prob. In order to assign probabilities to attribute values, e.g. for two different values of Attribute1,
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we could write
Prob1 :: EventType (Value11 , . . . ,ValueN ,Time ) ;

Prob2 :: EventType (Value21 , . . . ,ValueN ,Time )

With respect to the probability space, a common assumption is that it is defined over the possible
histories of the probabilistic SDEs. If SDEs are defined as discrete random variables, then one
SDE history corresponds to making a choice about each of the SDEs among mutually exclusive
alternative choices. The probability distribution is then defined over those SDE histories.

Probabilistic Model. In addition to handling uncertain data, we also require probabilistic rules.
We express a probabilistic rule by appending its probability value as a prefix, e.g.

Prob :: ce (A,T ) ::= πA=A2,T=T2 (ce1 (A1,T1); ce2 (A2,T2))

where, if ce2 occurred after ce1, then ce occurred at T2 with probability Prob. The probability space
is extended to include the inferred CE in the event histories. A probabilistic rule should then be
understood as defining the conditional probability of the CE occurring, given that its sub-events
occurred and satisfied its pattern. The attribute values of this CE are those returned by theprojection
operator π .
There are other ways to define the probability space and its semantics. For example, in the

probabilistic programming literature it is common to use the possible worlds semantics for the
probability space (e.g., in ProbLog [29]). The probability distribution is defined over the (possibly
multi-valued) Herbrand interpretations of the theory, as encoded by the CE patterns. In this setting,
we could assign non-zero probabilities even in cases where the rule is violated and we could end
up with every Herbrand interpretation being a model/possible world. The existence of “hard” rules
which must be satisfied excludes certain interpretations from being considered as models. When
using grammars (and sometimes logic), the space might be defined over the possible proofs that
lead to the recognition/acceptance of a CE.

4.2 Inference
In probabilistic CER, the task is often to compute the marginal probabilities of the CEs, given the
evidence SDEs. Consider the following example:

P (offense(MilwaukeeBucks,[00 : 00,00 : 24]) |SDEs)

where we want to calculate the probability that the team of MilwaukeeBucks was on the offensive
for the first 24 seconds of the game and we assume that offense(team, [start,end]) is a durative CE,
defined over intervals and in terms of SDEs, such as running, dribbling, etc. Moreover, there are
cases when we might be interested in performing maximum a posteriori (MAP) inference, in which
the task is to compute the most probable states of some CEs, given the evidence SDE stream. A
simple example from basketball is the query about the most probable time interval during which
an offense by a team is taking place:

Ioffense = arд
I
maxP (offense(MilwaukeeBucks, I ) |SDEs)

Another dimension concerns the ability to perform approximate inference. For all but the
simplest cases, exact inference stumbles upon serious performance issues, unless several simplifying
assumptions are made. For this reason, approximate inference is considered essential. It is also
possible for a system to provide answers with confidence intervals and/or the option of setting a
confidence threshold above which an answer may be accepted.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0000.



0:8 Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras

4.3 Performance
CER systems are usually evaluated for their performance in terms of throughput and latency. Less
often, the memory footprint is reported. When uncertainty is introduced, the complexity of the
problem increases and other factors that affect performance enter the picture, such as the option
of approximate inference. Unfortunately, standard benchmarks specifically targeting probabilistic
CER have not yet been established. Therefore, in this survey we can report only what is available
in the examined papers (see Section 6 for a further discussion).
Systems need to be evaluated along another dimension as well, that of accuracy. Precision

and recall are the usual measures of accuracy. F-measure is the harmonic mean of precision and
recall. The issue of accuracy is of critical importance and is not orthogonal to that of performance.
A system may choose to sacrifice accuracy in favor of performance by adopting techniques for
approximate inference. Another option would be to make certain simplifying assumptions with
respect to the dependency relationships between events so that the probability space remains
tractable.

5 APPROACHES
Surprisingly, there haven’t been many research efforts devoted exclusively to the problem of
handling uncertainty within the community of distributed event-based systems. The majority of
research papers that could be deemed as relevant to our problem actually come from the computer
vision community. Perhaps it is not much of a surprise if one takes into account the historical
roots of CER systems. Stemming from the need to build more active databases and to operate upon
streams of data that have a pre-defined schema, the problem of uncertainty, although present, was
not as critical as in the case of efficiently processing events from sensors.
Our analysis has identified the following classes of methods: automata-based methods, Proba-

bilistic Graphical Models, typically based on first-order logic, probabilistic/stochastic Petri Nets
and approaches based on stochastic grammars (usually context-free).

5.1 Automata-based methods
Most research efforts targeting the problem of uncertainty in CER are based on extensions of crisp
engines, the majority of which employ automata. In this section, we present these approaches.
Compared to other methods, those based on automata seem better-suited to CER, since input events
in CER are usually in the form of streams/sequences of events, similarly to strings of characters
recognized by (Non-) Deterministic Finite Automata. CEs are usually expressed in a declarative
way (similar to SQL) with the sequence operator playing a central role. These expressions are
subsequently transformed into automata, using the stream of SDEs as input. In the probabilistic
versions of automata-based methods, it is usually the SDEs that are uncertain, accompanied by
probability values with respect to their occurrence and/or attributes, as opposed to the CE patterns.
The goal is to use these probabilistic SDEs in order to determine the probabilities of CEs.

SASE-based approaches. SASE [94] and its extension, SASE+ [1], which includes support for the
Kleene plus operation (similar to Kleene star, but with at least one event occurrence), is an automata-
based CER engine which has frequently been amended in order to support uncertainty. The focus of
SASE is on recognizing sequences of events through automata. For each CE pattern, an automaton
is created whose states correspond to event types in the sequence part of the pattern, excluding
possible negations. As the stream of SDEs is consumed, the automaton transitions to a next state
when an event is detected that satisfies the sequence constraint. The recognized sub-sequences are
pruned afterwards, according to the other non-sequence constraints (e.g., attribute equivalences),
but, for some of these constraints, pruning can be performed early, while the automaton is active.
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Those SDEs that triggered state transitions are recorded in a data structure that has the form of a
directed acyclic graph, called Active Instance Stack (AIS), allowing for quick retrieval of those sub-
sequences that satisfy the defined pattern. SASE+ [1] deviates somewhat from this scheme in that
it employs NFAb automata, i.e., non-deterministic finite automata with a buffer for storing matches.
For the skip− till −any−match selection strategy, where all possible SDE combinations that match
the pattern are to be detected, the automaton is cloned when a SDE allows for a non-deterministic
action. For example, a SDE whose type satisfies a Kleene plus operator, may be selected, in which
case a new automaton is created.

For the probabilistic versions of SASE, the issue is how to correctly and efficiently calculate the
probability of the produced CEs. In all of these versions [40, 74, 89, 96], this probability is calculated
by conceptualizing a probabilistic stream as event histories, produced by making a choice among
the alternatives of each SDE. For example, if there are 10 SDEs in a data stream and two alternatives
for each of them – occurrence and non-occurrence – then there would be 1024 event histories. In
[40, 89], SDEs are treated as having only these two alternatives. However, in other works (e.g., [74]),
a SDE may have more alternatives, corresponding to different values for the arguments of the SDE.
In [96], uncertainty about SDEs concerns their timestamps, which are described by a distribution,
an issue not addressed in other works.
The probability of a CE could be calculated by enumerating all the histories, selecting those

which satisfy the CE pattern and summing their probabilities. The probability of a history depends
on the independence assumptions that each approach makes with respect to SDEs. Moreover, since
a full enumeration is highly inefficient, optimization techniques are employed in order to calculate
CE probabilities.
In the simplest case, all SDEs are assumed to be independent. In the work of [40], where this

assumption is made, a matching tree is gradually constructed with SDEs that trigger state transitions.
By traversing the tree, the sequence of SDEs producing a CE and its probability can be retrieved in
a straightforward manner through multiplications, since all SDEs are independent. In this approach,
as more SDEs arrive, probabilities can only become smaller and, by defining a confidence threshold,
certain branches of the tree may be early pruned.
In [74], SDEs are again assumed to be independent, but a full enumeration is avoided by using

a modified version of the Active Instance Stack, called the Active Instance Graph (AIG). The
concept of lineage, borrowed from the field of probabilistic databases [12], is used for calculating
CE probabilities. A similar approach is used in [89], where the assumption of complete SDE
independence is relaxed and some SDEs may follow a first-order Markov process. In this case, the
edges of the Active Instance Stack are annotated with the conditional probabilities. Note that the
conditional probability tables in this approach are based on event types. For every specific SDE
dependent on another SDE, probabilities must be explicitly provided. In this work, hierarchies of
CEs are also allowed.

In [96], the issue of imprecise timestamps is addressed, while all the other attributes have crisp
values. Again, SDEs are assumed to be independent. Complete enumeration of all possible worlds is
avoided by employing an incremental, three-pass algorithm through the events in order to construct
event matches and their intervals. This work was later extended [97], by adding negation and Kleene
plus and by allowing for user-defined predicates.
All of these SASE-based methods perform marginal inference and use confidence thresholds

for pruning results that fall below them. Only one attempts to increase performance through
distribution. To the best of our knowledge, the work of [89] is one of the very few developing a
CER system which is both probabilistic and distributed (PADUA, described below, is the only other
such method).
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Other automata-based approaches. Non SASE-based approaches have also appeared. A recognition
method that models activities using a stochastic automaton language is presented in [5]. In this
case, it is not the SDEs that are probabilistic, but the state transitions of the automaton, similarly
to Markov chains. A possible world is now essentially defined over activity occurrences that are
targeted for recognition, i.e. CEs. This method was later extended [4], in order to identify situations
that cannot be satisfactorily explained by any of the known CEs. In particular, the stochastic
automaton model is extended with temporal constraints, where subsequent SDEs can occur within
a user-defined temporal interval. Using possible-worlds based modeling, the method finds (partially)
unexplained activities. This is the only automata-based method that can perform both marginal
and MAP inference.
Another extension of [5] is the PADUA system [57]. PADUA employs Probabilistic Penalty

Graphs and extends the stochastic automaton presented in [5] with noise degradation. The edges
that connect subsequent events in a Penalty Graph, forming the structure of a CE, are associated
with a probability (noise) value that degrades the belief of the CE when other events intervene. As a
result, under such situations, the CE is being recognized, but with reduced probability. Besides CER,
the method can find patterns of events that do not belong to the set of known CEs. Additionally,
for purposes of scalability, Probabilistic Penalty Graphs can be combined by merging common
sub-Graphs, indexing and executing them in parallel.
Lahar [68] constitutes one of the earliest proposals and is based on the Cayuga engine [23].

Events are modeled by first-order Markov processes. The supported queries are categorized in three
different classes of increasing complexity. For the first two types of queries (regular and extended
regular), automata are used for recognition. For the most complex queries (safe), in which variables
are not shared among all of the conditions, a version of the Probabilistic Relational Algebra [30] is
used. A method which attempts to overcome the strict Markovian hypothesis of Lahar and apply
certain optimizations, such as early pruning, through an algorithm called Instance Pruning and
Filter-Detection Algorithm (IPF-DA), may be found in [18].

Commentary. Automata-based methods focus on recognizing sequences of events, in which some
of those events may be related, via their attributes, to other events of the sequence. In general, time
representation is implicit. As a result, and with the exception of [4], they do not include explicit
temporal constraints, such as concurrency or inequalities between timestamps.Windowing is the
only temporal constraint allowed. Moreover, they only address the issue of data uncertainty (the
exception here is again [4]), lacking a treatment of other types of uncertainty, such as pattern
uncertainty, and model relatively simple probabilistic dependencies between events.

To illustrate a case where concurrency andmore complex dependencies may be required, consider
a pattern trying to detect an attempted block by a defender:

attempt_block(Y ,T ) ::=σopponents(X ,Y ) (

shooting(X ,T ) ∧

jumping(Y ,T ) ∧

close(X ,Y ,T ) )

(1)

where player X is shooting at the same time that player Y is jumping, the distance between them is
small at that time (we assume image recognition can provide such information as close SDEs) and
the two players belong to different teams, i.e., they are opponents. Such a pattern would require
explicit temporal constraints or, at least, an implicit constraint about concurrent events, a feature
generally missing in automata-based methods. Moreover, jumping is clearly dependent on shooting
(a player usually jumps at the same time or after another player shoots but not while all other
players run), yet this dependence cannot be captured by assuming a Markov process that generated
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those events. Note also that the above pattern makes use of the opponents predicate, assuming that
the engine can take into account such background knowledge that is not part of the SDE stream.
Such knowledge is relatively easy to model in logic-based systems, but the automata-based ones
presented above have no such mechanism.
Now assume we want to express a rule stating that if two players are close to each other at

the current timepoint, then they are likely to be close at the next timepoint (a first-order Markov
assumption). This is not an event we would like to detect in itself, but domain knowledge which
we would like our system to take into account. Such rules may be helpful in situations where SDEs
may suddenly be missing, for example due to some sensor failure, but the activity has not ceased.
We could introduce the following two patterns:

1 :: close_m(X ,Y ,T ) ::= close(X ,Y ,T ) (2)

0.6 :: close_m(X ,Y ,T ) ::= σnext (T ,Tprev ious ) (
close_m(X ,Y ,Tprevious ) )

(3)

and use the close_m predicate instead of close in the definition of pattern (1) for attempt_block. The
first of these patterns simply transfers the “detection” probability of close to that of close_m (pattern
probability is 1), whereas the second one expresses the Markov assumption. In automata-based
methods where Markov assumptions are allowed, the conditional probabilities need to be provided
for every “ground” pair of SDEs. Uncertain patterns allow us to describe such dependencies in a
more succinct manner, as “templates”.

Assume also that we need some patterns to detect maneuvers in which the offender attempts to
avoid the defender. Two of these patterns could be the following:

0.9 :: avoid (X ,Y ,T2) ::= waiting(X ,Y ,T1);
crossover_dribble(Y ,T2)

(4)

0.7 :: avoid (X ,Y ,T2) ::= waiting(X ,Y ,T1);
running(Y ,T2)

(5)

where crossover_dribble and waiting are assumed to be CEs detected by their respective patterns.
In this case, we have a hierarchy of CEs, defined by probabilistic patterns, starting with the

SDEs, on top of them the waiting and crossover_dribble CEs and finally the avoid CE. An efficient
mechanism for propagating probabilities among the levels of the CE hierarchy would be required.
Among the presented methods, CE hierarchies are allowed only in [89]. Moreover, combining rules
would also be required, both for patterns (2) – (3) and patterns (4) – (5), i.e. functions for computing
the probabilities of CEs with multiple patterns (common head, different bodies). For example,
pattern (4) provides the probability of avoid given waiting and crossover_dribble and pattern (5)
the probability of avoid given waiting and running, but we do not know this probability given all
of the lower-level CEs. A combining rule could help us in computing such probabilities, without
adding them explicitly.

5.2 First-order logic & Probabilistic Graphical Models
Another line of research revolves around methods which employ probabilistic graphical models
in order to handle uncertainty. These models take the form of networks whose nodes represent
random variables and edges encode probabilistic dependencies. The twomain classes of probabilistic
graphical models used in CER are Markov Networks and Bayesian Networks, the former being
undirected models whereas the latter are directed. When used for CER, Markov Networks may be
combined with first-order logic, in which case they are called Markov Logic Networks (MLNs). The
nodes in a MLN represent ground logical predicates, as determined by the (weighted) formulas that
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express CE patterns. When Bayesian Networks are used, the nodes usually represent events (SDEs
and CEs).

Markov Logic Networks. Since their first appearance [69], Markov Logic Networks (MLNs) have
attracted increasing attention as a tool that can perform CE recognition under uncertainty. MLNs
are undirected probabilistic graphical models which encode a set of weighted first-order logic
formulas (for a comprehensive description of MLNs, see [24]). CEs are expressed as logic formulas
which may even contain existential and universal quantifiers (although the former can prove
quite expensive), as with first-order logic. However, in first-order logic, a possible world (i.e., an
assignment of truth values to all ground predicates) that violates even one formula is considered as
having zero probability. In order to avoid this strict requirement, the methods described in this
section may allow a formula to be “soft”, meaning that it is accompanied by a probability/weight
value, indicating how “strong” we need it to be compared to other formulas. As a consequence,
possible worlds can have non-zero probability, even when violating some formulas, albeit a lower
one than those without violations.

There is a substantial body of work on CER with MLNs, mostly concerned with human activity
recognition, with input events derived from video sources (and less frequently from GPS or RFID
traces). As a result, many of them have developed solutions that are domain–dependent. Here we
focus on those representative papers that are more closely related to CER, by providing a more
generic way for handling events, as in [59] and [82], where Allen’s Interval Algebra [6] is used and
in [79, 80], where a version of the Event Calculus [44] is used. With the use of such formalisms,
temporal constraints are not captured in the simplistic way implied by the greaterThan predicate.
Instead, built-in predicates about the temporal relations of events are provided, e.g., the after
relation in Allen’s Interval Algebra, for indicating that an event succeeds in time another event.

Contrary to automata-based solutions, MLNs focus on encoding probabilistic rules. This allows
both for incorporating background knowledge and for building hierarchies of CEs with correct
probability propagation. On the other hand, they use the less intuitive weights instead of probabili-
ties, which indicate how strong a rule is compared to the others. While it might be possible for
certain simple domains to manually define weights, usually a learning phase is required to optimize
them.

As far as data uncertainty is concerned, it is possible to include probabilistic SDEs as well. Since
a node in a MLN is not directly associated with a probability (it is the formulas/graph cliques that
have weights), these SDEs must be expressed as formulas too. Such formulas connect each observed
SDE with a “generated” SDE, with an appropriate weight (see the Commentary section below for
more details). Moreover, MLNs allow for more complex reasoning about SDEs. For example, in the
work of [85], besides handling noisy SDEs, missing SDEs may be inferred through rules about what
must have happened for an event to have occurred.
A similar approach is proposed by [59], where the Interval Algebra is employed and the most

consistent sequence of CEs are determined, based on the observations of low-level classifiers.
In order to avoid the combinatorial explosion of possible intervals, as well as to eliminate the
existential quantifiers in CE patterns, a bottom-up process eliminates the unlikely event hypotheses.
The elimination process is guided by the observations and the interval relations of the CE patterns.

In [81, 82], MLNs are again combined with Allen’s Interval Algebra, upon which a set of domain-
independent axioms is proposed. Abstraction axioms define hierarchies of events in which an
instance of an event with a given type is also an instance of all abstractions of this type. Prediction
axioms express that the occurrence of an event implies the occurrence of its parts. Constraint axioms
ensure the integrity of the (temporal) relations among CE and its parts. Finally, abduction axioms
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Fig. 1. CE probability estimation in the Event Calculus. The solid line concerns the Event Calculus in MLNs,
MLN-EC. The dashed line concerns a crisp (non-probabilistic) version of the Event Calculus. Due to the law
of inertia, the CE probability remains constant in the absence of SDEs. Each time the initiation conditions
are satisfied (e.g., in timepoints 3 and 10), the CE probability increases. Conversely, when the termination
conditions are satisfied (e.g., in timepoint 20), the CE probability decreases.

allow CE to be inferred on the basis of their parts, i.e. inferring when some events are missing. In
this case, SDEs are not probabilistic.
The work of [79, 80] represents one of the first attempts to provide a general probabilistic

framework for CER via MLNs. In order to establish such a framework, a version of the Event
Calculus is used whose axioms are domain-independent. Combined with the probabilistic domain-
dependent rules, inference can be performed regarding the time intervals during which activities
of interest (fluents in the terminology of the Event Calculus) hold. The problem of combinatorial
explosion due to the multiple timepoints that need to be taken into account is addressed by
employing a discrete version of the Event Calculus, using only integer timepoints and axioms that
relate only successive timepoints. For similar reasons, existential quantifiers are not allowed. Due to
the law of inertia of the Event Calculus (something continues to hold unless explicitly terminated or
initiated with a different value), this model increases the probability of an inferred event every time
its corresponding rule is satisfied and decreases this probability whenever its terminating conditions
are satisfied, as shown in Figure 1. In [78] the Event Calculus was again used, but this time the focus
was on probabilistic SDEs rather than probabilistic rules. The ProbLog framework was used [43], a
probabilistic extension of the logic programming language Prolog. ProbLog allows for assigning
probabilities to SDEs, i.e. for probabilistic facts. Intuitively, the success probability of a query (CE
rule) is the probability that this query is provable, starting from the (probabilistic) facts and any
other rules that might be present as background knowledge. The axioms of the Event Calculus
were expressed in ProbLog as background knowledge and a set of CE rules for human activity
recognition from video sources was tested. The method exhibited improved accuracy performance
with respect to crisp versions of the Event Calculus, when tested against noisy SDE streams.

The work of [15, 73] presents the Probabilistic Event Logic that defines a log-linear model from a
set of weighted formulas. It does not directly employMLNs but it is very close in spirit. The formulas
that describe CEs are represented in Event Logic, a formalism for defining interval-based events
[77], by employing the operators of Allen’s Interval Algebra. Each formula defines a soft constraint
over some events, in a manner similar to MLNs. However, instead of building a ground network
with all the time variables, the inference algorithm works with a specialized data structure, called
spanning intervals. This data structure allows for a compact representation of event occurrences
that satisfy a formula. The inference algorithm can work with set operations on intervals and
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performs local-search, based on MaxWalkSAT [39]. Moreover, a method is presented for learning
the weights of the formulas.
A probabilistic activity language for expressing CEs on top of an image processing suite is

proposed in [2]. This work does not employ graphical models, but we include it here because it
is based on first-order logic. CE patterns are flexible enough to incorporate both universal and
existential quantifiers, as well as alternations of quantifiers. As far as the input SDEs are concerned,
they can be either Boolean (with the usual true/false values) or probabilistic, accompanied by an
occurrence probability. The method can handle both instantaneous events and events that span
over intervals. In order to compute the probabilities of CEs, the dependencies between the SDEs
must be modeled as well. For this purpose, triangular norms [27] are used. Triangular norms are
binary functions that can model probabilistic dependencies more general than those of exclusivity
or independence For example, the minimum function can be used as such a norm (min(x,y), where
x and y are the probabilities of the two SDEs whose dependence we want to model). The off-line
detection algorithm works by recursively decomposing a CE formula into its parts, finding the
valid substitutions and keeping those that have a probability above a certain threshold. An on-line
algorithm is also presented, which can also detect partially completed activities.

Bayesian Networks. Bayesian Networks are directed graphical models (in contrast to MLNs,
which are undirected) whose structure can encode probabilistic dependencies between random
variables, represented as nodes in the network. When used for CER, the nodes of the network
usually correspond to SDEs and/or CEs. The work presented in [91–93] employs the technique of
knowledge-based model construction (KBMC), whereby knowledge representation is separated
from the inference process. Each event is assigned a probability, denoting how probable it is that the
event occurred with specific values for its attributes. In turn, CE patterns are encoded in two levels,
with a selection operation performing an initial filtering, mostly based on event type, followed
by a pattern-detection schema for more complex operations, based on temporal and attribute
constraints. The selection mechanism imposes certain independence properties on the network.
CEs are conditioned only on selectable lower-level events (as determined by the selection operation),
preventing the network from being cluttered with many dependency edges. This framework is
not limited to representing only propositional or even first-order knowledge. It could potentially
handle higher-order knowledge, since the pattern-matching step may, in principle, be defined in
any kind of language. However, the system presented [91–93] allows only predicates expressing
temporal constraints on event timestamps and equality constraints on event attributes.
The calculation of probabilities for the CEs is done by a Bayesian Network that is dynamically

constructed upon each new event arrival. The nodes of the network correspond to SDEs and CEs.
First, SDEs are added. Nodes for CEs are inserted only when a rule defining the CE is crisply
satisfied, having as parents the events that triggered the rule, which might be SDEs or even other
CEs, in case of hierarchical CE patterns. The attribute values of the inferred CEs are determined by
mapping expressions associated with the corresponding rule, i.e. functions mapping attributes of
the triggering events to attributes of the inferred event. In order to avoid the cost of exact inference,
a form of sampling is followed, that bypasses the construction of the network by sampling directly
according to the CE patterns.
A more recent effort extends the TESLA [19] event specification language with probabilistic

modeling, in order to handle the uncertainty both in input SDEs and in the CE patterns [21]. The
semantics of the TESLA language is formally specified by using a first-order language with temporal
constraints that express the length of time intervals. At the input level, the system, called CEP2U,
supports uncertainty regarding the occurrence of the SDEs, as well as the uncertainty regarding
the content of the SDEs. SDEs are associated with probabilities that indicate a degree of confidence,
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while the attributes of a SDE are modeled as random variables with some measurement error. The
probability distribution function of the measurement error is assumed to be known. The method
also models the uncertainty of CE patterns, by automatically building a Bayesian Network for each
rule. The probabilistic parameters of the network are manually estimated by domain experts.
Other methods based on Bayesian Networks, which could be used for CE recognition include

Bayesian logic programming [32], relational Bayesian Networks [37] and relational dynamic
Bayesian Networks [72]. Towards this direction, Dynamic Bayesian Networks have been extended
using first-order logic [52, 53]. A tree structure is used, where each node corresponds to a first-order
logic expression, e.g., a predicate representing a CE, and can be related to nodes of the same or
previous time instances. Compared to their propositional counterparts, the extended Dynamic
Bayesian Networks methods can compactly represent CE that involve various entities.

Commentary. Probabilistic graphical models, such as Markov Logic Networks and Bayesian
Networks, can provide a substantial degree of flexibility with respect to the probability distributions
that they can encode. On the one hand, they are very expressive and they don’t require restrictive
independence assumptions to be made. On the other hand, this increased flexibility comes at a cost
with respect to efficiency. In general, a rule which references certain random variables implies that,
before inference can begin, the Cartesian product of all the values of these variables needs to be
taken into account. For human activity recognition, one may assume that the number of persons
involved in a scene is relatively limited. However, this is not the case for all domains. For a fraud
detection scenario, involving transactions with credit cards, a CER system may receive thousands
of transactions per second, most of them having different card IDs. The demands of CER exacerbate
this problem, since time is a crucial component in these cases. The possible combinations of time
points with the other random variables can quickly lead to intractable models. All of the papers
discussed in this section employ low-arity (or even 0-arity) predicates, whose arguments have small
domain sizes, except for that of time. In order to reduce the unavoidable complexity introduced by
the existence of time, they develop special techniques, such as the bottom-up technique in [59].
With respect to probabilistic SDEs, although they can be incorporated into graphical models,

correctly encoding their dependencies can be far from obvious, especially with MLNs. Assume we
want to assign an occurrence probability of 80% to the close SDE of rules (2)–(3). With MLNs, we
could replace rule (2) with an equivalence rule, such as:

1.39 ∀X ,Y ,T close(X ,Y ,T ) ↔ close_m(X ,Y ,T ) (6)

with the appropriate weight (log-odds of occurrence and non-occurrence probabilities), where
close are the observed SDEs and close_m the inferred probabilistic events to be used in other rules,
such as (1). It would not be sufficient to directly express rules (3) and (6) in first-order logic and
use them to construct an MLN, since the dependencies introduced would mean that the marginal
probability of the close SDE could be affected by the probability of the close_m(X ,Y ,Tprevious )
predicate. Bayesian Networks could be used to avoid such problems, due to their directionality. On
the other hand, MLNs can be trained as discriminative models, which means that it is not necessary
to explicitly encode all the probabilistic dependencies.

5.3 Petri Nets
In order to address issues of concurrency and synchronization, some methods have employed
probabilistic extensions of Petri Nets. Formally, a Petri Net may be described as a bipartite directed
graph (see [61, 66] for more complete discussions). It has two types of nodes:
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Fig. 2. Basketball transition pattern as a Petri Net.

• Place nodes, representing states of the modeled activity (usually depicted as circles). Each
such node may hold multiple tokens, usually depicted as small, black circles inside place
nodes.
• Transition nodes (usually depicted as rectangles), which, as the name suggests, connect place
nodes. A transition node is said to be enabled when all of its input place nodes have tokens, in
which case the node may fire. Conditions may be imposed on transition nodes to determine
exactly when they should fire. Firing removes all enabling tokens from the input place nodes
and writes a new token at each output node.

A marking is a function that assigns tokens to place nodes. When a transition fires, the marking of
the Petri Net changes to a new one. A simple example of a rule describing a transition in basketball
from defense to offense, encoded as a Petri Net, is shown in Figure 2. The marking in this figure
means that player1 has grabbed a rebound and player2 is in his team’s half-court and does not have
the ball. Note that, for the activity to complete, all three conditions of the final transition node must
hold, i.e., player1 must have the ball and both players must be in the opponent team’s half-court.
This is a transition node that enforces synchronization between the two players’ activities. The
ability to model constraints about synchronization and concurrency is a powerful feature of Petri
Nets.
A probabilistic extension to Petri Nets has been proposed in [3], for recognizing CEs that

represent human activities. A Petri Net expresses a CE and is formed by SDEs that are connected
with constraints, like temporal durations. The SDEs and other possible constraints are encoded
as conditions on transition nodes. Special dead-end place nodes are used in order to represent
forbidden actions that must immediately trigger an alarm. The transition from one state to another
is associated with a probability value. Note that there might be multiple possible transitions from a
certain place node (in our example, after player1 grabs the rebound, he could also make a pass to
player2 as an alternative). The sum of the probabilities of these transitions is 1. Given a sequence
of SDEs, the method can identify segments of the sequence in which a CE occurs with probability
above a specified threshold or infer the most likely CE in the sequence.
A stochastic variant of Petri-Nets that models the uncertainty of input SDEs is proposed in

[46], an issue not addressed in [3]. Specifically, SDEs are recognized with some certainty, using
lower level classification algorithms. CEs are represented by Petri Nets, in terms of SDEs that are
associated with certainties and temporal constraints. The probability of a CE being recognized
is computed through a Bayesian Particle Filter approach. It combines a dynamic model for the
probability of moving to a new state (marking) given the previous one and a measurement model
for the probability of observing SDEs, given the current state. However, the transitions themselves
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cannot be assigned arbitrary probabilities by the user. If there are paths from one marking to other
markings (via the SDEs), then the dynamic model assigns equal probabilities to all these paths.

Commentary. One limitation of the approaches that use Petri Nets is the lack of a mechanism for
modeling a domain in a truly relational manner, i.e. by allowing relations to be defined between
attributes of events. These methods treat events as 0-arity predicates, related only through temporal
constraints, as implied by the structure of the Petri Net. As is the case with automata too, Petri
Nets tend to make a significant number of independence assumptions. The domain on which they
have been tested is that of human activity recognition, in which the sequential nature of some
activities allows for the adoption of first-order Markov models. As far as inference is concerned,
both MAP and marginal are possible and optimization techniques, such as confidence thresholds
and approximate inference have been employed.

5.4 Grammars
A number of research efforts have focused on syntactic approaches to CE recognition. These
approaches typically convert a stream of input SDEs to a stream of symbols upon which certain
user-defined rules may be applied. Rules are defined via a stochastic grammar (see [84] for a
description of stochastic context-free grammars) in order to take uncertainty into account. This can
be achieved by assigning a probability value to each production of the grammar. The probabilities of
all productions with the same non-terminal symbol on their left-hand side must sum to 1. Stochastic
grammars, like the ones described in the rest of this section, have some attractive features. For
example, it is easy to define CEs within a single hierarchical grammar. Moreover, they can provide
probability evaluations even for “partial matches” of a CE, e.g., for its prefixes, a useful feature for
predicting events that might follow.

A two-step approach along these lines is proposed in [36]. Low-level detectors, based on Hidden
Markov Models, are used to generate a symbol stream which is then fed into a parser constructed
from a stochastic context-free grammar (CFG). This parser in turn employs stochastic production
rules in order to determine the probability of a high-level event. Each production rule is accompanied
by a probability measure, which defines the conditional probability of this production being chosen,
given that its non-terminal is up for expansion. Such probability measures determine how typical
the corresponding rules are. However, the presented method is extended in order to take into
account probabilistic SDEs as well, so that the competing derivations are weighed not only by
the probability measures of the rules, but by the likelihood of the SDEs too. This method can
also incorporate production rules that act as background knowledge and produce a grammar that
is more “robust”, in the sense that it can handle erroneous SDEs. Extensions of this method are
presented in [58] and in [56]. In [58], new techniques for error detection and recovery are proposed,
without the need to modify the grammar when errors happen (absence or presence of an event
that was or was not expected), as is the case in [36]. This allows determine how and when an error
occurred and thus also allows for reasoning about such errors. Additionally, an efficient method for
parsing activities involving multiple agents is proposed, by partitioning activities into separable
groups which can then be handled independently. In [56] context-sensitive grammars are used,
i.e., symbols/events may have arguments, allowing for a compact and succinct representation of
complex activities.

A hierarchical method is proposed in [71] that combines a syntax for representing the CE patterns
of [70] with probabilistic recognition. A syntax similar to that of context-free grammars is used for
describing CEs, but the actual recognition is treated as a constraint satisfaction problem. Themethod
aims to probabilistically detect the time intervals in which CEs occur. Input SDEs are associated
with probabilities, indicating a degree of belief. Based on a context-free grammar representation
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scheme, CE patterns are expressed in terms of other events (SDEs or CEs) and form a hierarchical
model. Furthermore, events are related with temporal interval, logical and spatial constraints [6].
In situations where the input stream is incomplete, the method generates the missing SDEs with
low confidence. The probability of a CE is calculated by exploiting the dependency information
between the CE and its sub-events, as encoded in the hierarchy tree. This method for calculating
probabilities is similar to that of Bayesian Networks, the main difference being that siblings are not
assumed to be conditionally independent. When the calculated probability of the CE is above a
specified threshold, it is considered as recognized.

Moving up to context-sensitive grammars, the work in [65] represents CEs as temporal And-Or
Graphs (T-AOG) and attempts both to recognize events from video streams and to infer a person’s
intentions. In a T-AOG, terminal nodes represent atomic actions (SDEs), i.e., elementary sequences
of spatial relations between agents and objects. On top of these atomic actions, a hierarchy of events
is constructed, using And-nodes and Or-nodes. And-nodes define temporal (sequential) relations
that regulate the durations of its sub-events. All of the sub-events of an And-node must occur. On
the contrary, Or-nodes represent different options between events and each such option has an
associated probability (for a complete discussion of And-Or Graphs, see [99]). Given a sequence of
SDEs, a parsing algorithm incrementally constructs all the possible partial graphs that can interpret
the input sequence. In order to limit the number of partial graphs, those whose probability falls
below a certain threshold are pruned. The probability of a graph is computed by taking into account
the probabilities of the SDEs, the frequency that an Or-node follows a path and the probability that
an And-node’s temporal relations are satisfied. As a graph is incrementally constructed, the system
can also make predictions about the events that are expected to follow. Finally, this work is one of
the few that learns CE patterns, by using an unsupervised learning algorithm to build the T-AOG.

Commentary. In [36] the SDEs (terminal symbols) are represented as 0-arity, hence no relations
may be defined on attributes. Moreover, when defining a (production) rule, all the possible sub-
scenarios (expansions) must be explicitly stated, with probability values that sum to 1. For example,
a rule for detecting the avoid event, as in rule (4), cannot be written, as:

0.9 :: Avoid_Player1_Player2 →

Waitinд_Player1_Player2,
Crossover_Dribble_Player2

(7)

This rule has a probability of 0.9 and therefore we need extra scenarios. All of these scenarios for
avoid need to be explicitly provided. In this example, rule (5) should be added as:

0.1 :: Avoid_Player1_Player2 →

Waitinд_Player1_Player2,
Runninд_Player2

(8)

Note that now the probabilities of the above two production rules must sum to 1. The two scenarios
are considered as mutually exclusive. Note also that events are not relational. On the other hand,
the addition of sensitivity in [56] and [65] can provide a more expressive power.

6 DISCUSSION
In this last section, we summarize the reviewed approaches and present the weaknesses and
strengths of each class of methods. We also discuss the open issues that remain and possible
directions of future research.
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Language Expressiveness

Approach σ π ∨ ¬ ; * W Hierarchies Temporal Model Background
Knowledge

Automata

SASE+ [40] ✓ ✓ ✓ ✓ ✓ Points, Implicit.

SASE+ AIG [74] ✓ ✓ ✓ ✓ ✓ Points, Implicit.
SASE+ optimized AIS
[89] ✓ ✓ ✓ ✓ ✓ ✓ Points, Implicit.

SASE++ [96, 97] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Points, Implicit.

Lahar [68] ✓ ✓ ✓ Points, Implicit.

IPF-DA [18] ✓ ✓ ✓ Points, Implicit.
Stochastic Automaton [4,
5]
(+ PADUA [57])

✓ ✓ Points, Implicit.

First-order logic & Probabilistic Graphical Models

MLN-Allen [59] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Intervals, Explicit.

Allen’s Interval Algebra. ✓

MLN-Event Calculus
[79, 80] ✓ ✓ ✓ ✓ ✓

Points, Explicit.
Event Calculus.

✓

MLN-hierarchical
[81, 82] ✓ ✓ ✓ ✓

Intervals, Explicit.
Allen’s Interval Algebra. ✓

ProbLog Event Calculus
[78] ✓ ✓ ✓ ✓ ✓

Points, Explicit.
Event Calculus.

✓

Probabilistic Event Logic
[15, 73] ✓ ✓ ✓ ✓

Intervals, Implicit.
Allen’s Interval Algebra. ✓

Probabilistic Activity
Detection [2] ✓ ✓ ✓ ✓ Intervals, Explicit.

KBMC [91–93] ✓ ✓ ✓ ✓ ✓ Points, Explicit.

CEP2U [21] ✓ ✓ ✓ ✓ ✓ ✓ Points,Implicit.

Petri Nets
Probabilistic Petri Net
[3] ✓ ✓ ✓ ✓ ✓ Points, Implicit.

Particle Filter Petri Net
[46] ✓ ✓ Points, Implicit.

Grammars

Stochastic CFG [36] ✓ ✓ ✓ ✓ Intervals, Implicit. ✓

Hierarchical CFG [71] ✓ ✓ ✓ ✓ ✓
Intervals, Implicit.

Allen’s Interval Algebra.
Temporal And-Or
Graphs [65] ✓ ✓ ✓ ✓ Intervals, Implicit.

Approach σ π ∨ ¬ ; * W Hierarchies Temporal Model Background
Knowledge

Table 1. Expressive power of CER systems. σ : selection, π : projection, ∨: disjunction, ¬: negation,
;: sequence, *: iteration, W: windowing.
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Probabilistic Expressiveness

Approach Model
Independence
assumptions D.U. P.U. H.C.

Automata

SASE+ [40] Simple multiplication. All events independent. Occ.

SASE+ AIG [74] Lineage. SDEs independent. Occ./ Att.

SASE+ optimized AIS [89] Multiplication on Markov chain. SDEs independent or Markovian.
Different streams independent. Occ.

SASE++ [96, 97] Probability distribution on time
attribute.

SDEs independent. Occ.

Lahar [68] Probabilistic Relational Algebra. 1st-order Markov for SDEs.
Different streams independent. Occ./ Att.

IPF-DA [18] Simple multiplication. 1st-order Markov (+ some exten-
sions). Occ./ Att.

Stochastic Automaton [4, 5]
(+ PADUA [57])

Patterns modeled as stochastic
processes, similar to Markov chains.

1st-order Markov within CE.
Different CEs independent. ✓

First-order logic & Probabilistic Graphical Models

MLN-Allen [59] Markov Logic Networks.
Bottom-up hypothesis generation. None. Occ. ✓ ✓

MLN-Event Calculus [79,
80] Markov Logic Networks. None. ✓ ✓

MLN-hierarchical [81, 82] Markov Logic Networks. None ✓ ✓

ProbLog Event Calculus
[78]

Probabilistic Logic Pro-
gramming. SDEs independent. Occ.

Probabilistic Event Logic
[15, 73]

Weights, as in Conditional
Random Fields.

None ✓ ✓

Probabilistic Activity
Detection [2]

Probabilities assigned to predicates
for object equality. Depends on t-norm. Occ.

KBMC [91–93] Bayesian Networks. SDEs independent. Occ./ Att. ✓

CEP2U [21] Bayesian Networks.

Event attributes independent.
SDEs independent.

CEs dependent only on events
immediately below in hierarchy.

Occ./ Att. ✓

Petri Nets

Probabilistic Petri Net [3]
Hard constraints as forbidden

actions.
Activities as stochastic processes.

Conditioned on previous event in
CE pattern. ✓ ✓

Particle Filter Petri Net [46] Bayesian recursive filter 1st-order Markov.
SDEs independent. Occ.

Grammars

Stochastic CFG [36] Stochastic production rules. Rules conditionally independent. Occ. ✓

Hierarchical CFG [71] Similar to Bayesian Networks
(but siblings not cond. independent) Conditional independence of SDEs. Occ.

Temporal And-Or Graphs
[65]

As in Markov Chains for Or-nodes.
As in graphical models for And-
nodes.

None. Occ. ✓

Approach Model
Independence
assumptions D.U. P.U. H.C.

Table 2. Expressive power of CER systems with respect to their probabilistic properties. D.U.: Data Uncertainty,
Occ.:Occurrence, Att.:Attributes, P.U.: Pattern Uncertainty, H.C.: Hard Constraints.
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Inference

Approach Type C.T. Ap. D. Efficiency Accuracy

Automata

SASE+ [40] Marginal ✓ 0.8-1.1 K events/sec with Kleene+.

SASE+ AIG [74] Marginal ✓

1000K events/sec, almost constant
for varying window size (3 to 15

timepoints).
1000K-100K events/sec for
experiments with 1 up to 10

alternatives of a SDE.
SASE+ optimized AIS [89] Marginal ✓ ✓ 8K-13K events/sec for 2-6 nodes.

SASE++ [96, 97] Marginal ✓
Reduction from exponential to

close-linear cost w.r.t to selectivity /
window size.

Lahar [68] Marginal ✓
100K events/sec for Extended

Regular Queries.

> 10 points increase in accuracy
w.r.t. a standard deterministic

approach.

IPF-DA [18] Marginal ✓
4-8K events/sec for patterns of

length 6 down to 2.

Stochastic Automaton [4, 5]
(+ PADUA [57])

Marginal
and MAP

✓ ✓

Running time linear in video length.
Parallel version (PADUA) reached

335K events/sec with 162 computing
nodes.

PADUA [57] achieved better F-
measure than [4, 5].

First-order logic & Probabilistic Graphical Models

MLN-Allen [59] Marginal F-measure > 70% for varying
window sizes.

MLN-Event Calculus [79, 80] Marginal ✓
Increased precision, slight decrease
in recall, w.r.t. deterministic solution.

MLN-hierarchical [81, 82] MAP

ProbLog Event Calculus [78] Marginal Improved F-measure w.r.t. crisp
version.

Probabilistic Event Logic [15,
73] MAP ✓

Smooth accuracy degradation when
noise in time intervals of SDEs added.
Relative robustness against false

positives/negatives.

Probabilistic Activity
Detection [2] Marginal ✓

Running time at most linear in the
number of objects in the video

sequence.

Better precision/recall than Hidden
Markov Models/ Dynamic Bayesian
Networks, higher computation time.

KBMC [91–93] Marginal ✓
Sub-linear decay of event rate w.r.t

possible worlds.
CEs within desired confidence

interval.
CEP2U [21] Marginal ✓ 50% overhead w.r.t deterministic case.

Petri Nets

Probabilistic Petri Net [3] Marginal
and MAP

✓
∼ 3 seconds to process videos ∼ with

60 different SDE types.

Particle Filter Petri Net [46] Marginal ✓

Increased true positive rate w.r.t.
deterministic solution. Slight
increase in false positive rate.

Grammars

Stochastic CFG [36] Marginal ✓

Hierarchical CFG [71] Marginal ✓
Increased accuracy when noisy SDEs
present, w.r.t. case with crisp SDEs.

Temporal And-Or Graphs [65] MAP ✓
87%–90% accuracy for predicting

human intentions.
Approach Type C.T. Ap. D. Efficiency Accuracy

Table 3. Inference capabilities of probabilistic CER systems. C.T.: Confidence Thresholds, Ap.: Approximate
Inference, D.: Distributed
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6.1 Summary
Table 1 summarizes the expressive power of the presented CER systems. Its first columns correspond
to the list of operators presented in Section 4.1. The other columns assess various aspects of the
functionality supported by each system. These are:
• Hierarchies: The ability to define CEs at various levels and reuse those intermediate inferred
events in order to infer other higher-level events.
• Temporal Model: Events may be represented by timepoints or intervals. Moreover, the time
attribute might be explicitly included in the constraints (e.g. (T2 > T1) ∧ (T2 − T1 > 100))
or temporal constraints may be defined by referring implicitly to time in the rules (e.g. the
Sequence operator implicitly defines T2 > T1). When a specific temporal formalism is used
(e.g., Allen’s Interval Algebra), we mention that as well.
• Background Knowledge: Does the system support knowledge, besides the CE patterns?

In Table 2 we present the probabilistic properties of each method, along the following lines:
• Model: The probabilistic model used.
• Independence assumptions: What are the independence/dependence assumptions made?
Note that when we write that a method makes no independence assumptions (cell filled with
“None”), the meaning is not that it cannot make such assumptions, but that it does not have
to and that it does not enforce them on the probabilistic model.
• Data uncertainty: Does the system support data uncertainty? If yes, is it about the occurrence
of events or both about the occurrence and the attributes?
• Pattern uncertainty: Is there support for uncertain patterns?
• Hard constraints: Is there support for rules that may not be violated?

Table 3 presents the inference capabilities of the presented systems, along the following lines:
• Type: Can the system perform Marginal inference, MAP inference or both?
• Confidence Thresholds: Is there support support for confidence thresholds above which a CE
is accepted?
• Approximate: Does the system support techniques for approximate inference?
• Distribution: Is there a distributed version of the proposed solution?
• Efficiency: Remarks about performance with respect to throughput. Note that information
about performance is not always available. Moreover, since standard benchmarks for proba-
bilistic CER are not available, the presented figures are those reported by the authors of each
approach, who may choose metrics and datasets for their own purposes. This means that a
direct comparison is not possible.
• Accuracy: Remarks about performance with respect to precision and/or recall.

Our review of probabilistic CER systems identified a number of strengths and limitations for the
proposed approaches. We summarize our conclusions in Table 4. As a note of caution though, when
a weakness is reported, this does not mean that the corresponding method cannot in general support
a feature (e.g., as might be the case for iteration in first-order logic), but that the presented methods
have not incorporated it, although it might be possible (for example, the absence of hierarchies in
automata-based methods).
The current systems for probabilistic CER need to deal with a trade-off between language

expressiveness, probabilistic expressiveness and complexity. As can be seen in Table 4, automata-
based methods can easily handle sequence and iteration operators, but they usually model only data
uncertainty, without taking into account pattern uncertainty. Moreover, they rarely move beyond
the 1st-order Markov assumption. Therefore, when more expressive power is required, one of the
other three approaches should be preferred. For example, Petri Nets are quite powerful for modeling
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Approach Strengths Weaknesses

Automata

dummy
Iteration,Windowing, formal Event Algebra.

Data uncertainty, both with respect to occur-
rence of events and event attributes.

Support for confidence thresholds. High
throughput values.

dummy
Limited support for event hierarchies. No
background knowledge. Implicit time repre-
sentation (hence no explicit constraints on
time attribute).

Limited or no support for rule uncertainty.
Too many independence assumptions. No
hard constraints.

Throughput figures come from experiments
with simplistic event patterns.

First-order logic
& Probabilistic
Graphical Models

dummy
Complex temporal patterns, with explicit
time constraints. Event hierarchies. Back-
ground knowledge. Usually provide a formal
Event Algebra.

Pattern uncertainty. Limited independence
assumptions. Hard constraints possible.

MAP and approximate inference.

dummy
No Iteration. Limited support forWindowing.

Harder (but not impossible) to express data
uncertainty. Often training is required to as-
sign probabilities/weights to rules.

Low (or unknown) throughput.

Petri Nets

dummy
Concurrency and synchronization.

Support for both data and pattern uncer-
tainty (but not both in the same model).

Can perform both MAP and Marginal in-
ference. Confidence thresholds and approxi-
mate inference possible.

dummy
Not truly relational. No Windowing, hier-
archies or background knowledge. Implicit
time representation.

Strict independence assumptions.

Low (or unknown) throughput.

Grammars

dummy
Very easy to model hierarchies and Iteration.
Recursive patterns.

Both data and pattern uncertainty.

Confidence thresholds.

dummy
Not truly relational (unless context-sensitive
grammars are used). No Negation. Implicit
time representation. No background knowl-
edge.

Limited methodology for efficient probabilis-
tic inference.

Unknown performance for through-
put/latency.

Table 4. Strengths and weaknesses of the reviewed probabilistic CER approaches.

concurrency and synchronization. Grammars are very well suited for expressing hierarchies and
recursive patterns and can also model both data and pattern uncertainty. If a truly relational model
is needed, than first-order logic approaches can provide a solution and can also handle intervals,
hierarchies and background knowledge. When combined with probabilistic graphical models, they
can also be very flexible as far as their independence assumptions are concerned. However, this
increased expressive power comes at the cost of high computational complexity and, as a result, of
low throughput.
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6.2 Open Issues
Finally, we discuss a few issues that, according to our survey, still remain open and thus provide
possible directions for future research.

6.2.1 Performance (Evaluation). Achieving high throughput figureswith complex patterns/models
so that real-time inference is possible still remains a significant challenge. Moreover, until now
very few approaches have explored distributed solutions. The performance trade-offs between
throughput and latency have also not been explored yet. There is a general lack of understanding
about how the various aspects of probabilistic CER affect not only the accuracy of the produced
CEs, but also the efficiency, in terms of latency and throughput. The last two columns of Table 3
present some performance results for each method, but in an informal way. Unfortunately, there is
a lack of standard datasets and benchmarks for probabilistic CER (for crisp CER, a set of perfor-
mance affecting factors is presented in [54] and a benchmark suite in [55]). Therefore, testing and
comparing various probabilistic CER methods in a rigorous and formal way still remains an open
issue. In order to assess the capabilities of probabilistic CER systems, there is a need for standard
benchmarks that would allow for empirical comparisons in various scenarios. Based on our review
so far, Table 5 presents a list of factors (first column) that should be taken into account and that
could act as possible dimensions upon which a benchmark for probabilistic CER could be developed.
First, the behavior of a system when ingesting events whose occurrence is uncertain should be
tested. The parameters that can be varied in this case are:

• The occurrence probabilities of the SDEs. When (some of) these probabilities are low, can
the system produce meaningful results or does it run into problems (e.g., rounding errors)?
When they are high and the events are almost certain, does it produce results that are similar
to the ones produced by a crisp system?
• The percentage of SDEs that might be missing or corrupted (incorrect labeling) in the input
stream. In this case, certain CEs might not be detected at all (false negatives) or wrong CEs
might be produced (false positives).
• Probabilistic dependencies among SDEs. As more complex dependencies are introduced, from
independent, identically distributed (i.i.d.) SDEs to SDEs generated by a 1-order (or 2-order,
etc.) Markov process and to other processes, can the system maintain acceptable precision
and recall scores?
• The number of different event types that may appear in the input stream can affect the
complexity of a probabilistic model and thus affect both its accuracy and efficiency.

Another dimension concerns events whose attributes may be uncertain. In this case, the factors
that may affect the performance of a system are:

• The type of distribution the attribute values may follow, which can affect both accuracy and
efficiency (some distributions might be more complex to handle).
• As in the case of SDE occurrence, some attributes may also be missing or corrupted, even if
the event type is correct.
• The way the attributes may depend probabilistically on each other.
• The number of uncertain attributes that an even may have.

With respect to pattern uncertainty, the performance affecting factors are:

• The weights/probabilities of the patterns, which can affect both precision/recall and through-
put/latency, especially when optimization techniques are used. For example, a simple opti-
mization technique is that of pruning some processing paths once it is known that a complex
event, if detected, will have a low probability. The weights of the patterns can affect such
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Datasets

Factors DEBS’15
Taxi

DEBS’14
Energy

DEBS’13
Football

ILP’16
Agent
traces

ECML’15
Taxi

Data uncertainty / Occurrence

Occurrence probability

Erroneous/missing SDEs ✓ ✓ ✓

SDEs i.i.d., m-order Markov process,
other processes
Varying # of event types involved (1) (2) (2) (1) (1)

Data uncertainty / Attributes
Distribution on attribute values
(e.g., uniform, Gaussian)
Erroneous/missing attributes ✓ ✓ ✓

Dependencies between attributes

Varying # of attributes (17) (7) (13) (3) (9)

Pattern uncertainty
Pattern weight/probability (+ hard
constraints)
Arity of predicates involved and do-
main size
CE dependencies (independent,
Conditional Probability Tables,
distributions, etc.)
Uncertain background knowledge ✓

Pattern size
Varying # of patterns (2) (3) (6) (1) (2)

Table 5. Factors under test for a possible benchmark for probabilistic CER systems.

techniques, especially when the patterns are unknown and have to be learned, in which case
complex dependencies may arise, as CEs may be structurally related.
• The arity of the predicates involved in a pattern (number of attributes) and the number
of different values that these attributes may take (domain size). The arity and domain size
significantly affect the size of the resulting probability space.
• The probabilistic dependencies between CEs which affect how efficiently and correctly
probabilities may propagate, especially when deep hierarchies are present.
• The presence of rules for background knowledge, which may themselves be probabilistic.
• The number of patterns that must be (simultaneously) evaluated and the size of each pattern
(i.e., the number of body literals).

A benchmark suite should be able to vary the values corresponding to the above described factors
in order to assess their impact on performance. For example, the occurrence probabilities of SDEs
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could be varied in a step-wise fashion, within the range 5% – 100% (low probability to certainty).
Similarly, the number of event types involved could range from a single event type to numbers
that are typical for real-world applications.

The remaining columns of Table 5 correspond to a number of datasets that have been provided
in the past for the purpose of running challenges in various conferences. We looked for suitable
datasets in the challenges held since 2013 in the following conferences: the International Conference
on Distributed and Event–Based Systems (DEBS), the International Conference on Inductive Logic
Programming (ILP), the International Conference on Machine Learning (ICML), the European
Conference on Machine Learning (ECML) and the Uncertainty in Artificial Intelligence (UAI)
conference. Not all of the above conferences actually hold a challenge and access to the challenges
and their respective datasets was not always possible. Out of the datasets that we were able access,
we have chosen to include datasets that are closer in spirit to CER (e.g., a dataset for predicting house
prices based on static features is not useful for CER) and that contain some form of uncertainty.
If a dataset includes an evaluation factor, we fill the corresponding cell with a check-mark. Note,
though, that none of the datasets has any variation on the listed factors, like SDEs with varying
occurrence probabilities or patterns whose number is incrementally increased. For some of the
factors, however, we include in parentheses the respective (fixed) numbers for each dataset, as
an indication for the order of magnitude. These factors are the following: number-of-event-types,
number-of-attributes and number-of-patterns. Below, we provide a brief description of each dataset:

• DEBS’15: This was a taxi-related challenge. The dataset was a stream of trip reports from
New York City. The SDEs were of a single event type with attributes relaying information
about each trip, like its duration, the distance covered, the pick–up and drop–off locations,
etc. The goal was two-fold: the identification of recent frequent routes and identification of
high profit regions.
• DEBS’14: This dataset came from the smart grid domain and focused on analyzing energy
consumption measurements, like short-term load forecasting, based on measurements from
households. The dataset contained two SDE types, one containing current load (in Watt)
and the other accumulated work (in kWh), both for each energy consumption sensor. Three
CEs were required to be detected. Two of them concerned load prediction (on a per-house
and per-plug basis) and the third one targeted house-based, outlier detection. Semi-formal
patterns were given for them, in the form of mathematical formulas.
• DEBS’13: This dataset was derived from football matches. Data were collected from sensors
located near the players’ shoes and in the ball. SDEs consisted of a stream of events with
kinematic information from the sensors, such as location, velocity and acceleration. In
addition, there were SDEs concerning referee actions. The challenge required the detection of
six CEs in total, providing information about player and team statistics, such as ball possession
and shots on goal.
• ILP’16: This was an artificial dataset concerning an agent learning about its environment.
The agent had to move around a grid consisting of cells, with some moves being valid and
some not. The SDEs consisted of a series of positions of the agent (a trace) at different
timepoints. The goal was to learn a set of rules that could decide (with a confidence value)
whether or not a (test) trace was valid. In the probabilistic scenarios of the challenge, there
was extra uncertain background knowledge about the grid, e.g., some cells had a certain
probability of teleporting the agent to other cells.
• ECML’15: The goal of this challenge was to test the ability of a method to predict the final
destination of taxis, based on their spatial trajectories. A one-year dataset was provided,
consisting of the trajectories performed by 442 taxis running in the city of Porto, in Portugal.
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The SDEs consisted of a single event type and each event contained information about a trip,
like its start timestamp, the type of day (e.g., holiday or normal), the trajectory as a polyline,
etc. The CEs to be detected had to accurately predict trip destination and travel time.

Note that these datasets were not accompanied by formal definitions for the patterns under test.
These had to be either learned or manually defined by the challenge participants. As can be seen
in Table 5, the type of uncertainty that currently available datasets usually incorporate is the one
that has to do with missing/erroneous events and/or attributes. Ideally, a benchmark should be
able to test all possible performance affecting factors. The above listed factors can affect either
efficiency (latency/throughput) or accuracy (precision/recall) or both of them. As can be seen
in Table 3, automata-based methods tend to focus their experimental evaluation on efficiency
(although they can be tested for accuracy as well, e.g. [68] and [4, 5]) whereas the three other
classes of methods usually report accuracy results. A comprehensive benchmark should allow for
the possibility of exploring the possible trade-offs between efficiency and accuracy when testing
the various performance affecting factors.
Towards this goal, the preparation of appropriate datasets would be an important task. As

can be seen in Table 5, there are many factors that need to be taken into account. Moreover, CE
annotation at an appropriate scale is crucial for testing predictive accuracy. It is likely that not
all real-world datasets exhibit all these features. Consequently, benchmarking for probabilistic
CER should be augmented by synthetic streams, produced by data generators according to the
pre-specified parameters and models displayed in Table 5.

6.2.2 Learning. Learning constitutes another open issue. Only a few of the systems reviewed
attempt to learn the weights or structure of CE patterns [15, 65, 73]. Instead, they usually rely
on experts to manually define the patterns themselves and/or their weights/probabilities. Manual
definitions might be sufficient for simple patterns, but would not scale well in case multiple, complex
rules with complicated dependencies are required. This problem is exacerbated for some of the
methods (like MLNs) which use the less intuitive notion of weights, encoding the relative strength
of a rule inside a theory.
The inherent presence of time in CER presents another challenge. Some statistical relational

learning methods might perform well in static domains, but the combinatorial explosion introduced
by the presence of time might render them inefficient. Moreover, the patterns may evolve over
time and, therefore, they need to be able to adapt to changing conditions if they are to sustain
acceptable performance scores. Developing methods for automatically generating and updating
pattern definitions in an online fashion that are also resilient to noisy and incomplete data (as is
common in Big Data applications) is thus another challenge.
Note that traditional (numerical) machine learning techniques might not always be directly

applicable to CER. It is often the case that learning should be able to produce symbolic, relational
pattern definitions within some formalism. The reason behind this requirement is that users might
need to be able to interpret the learned patterns. Additionally, human experts and analysts often
have background knowledge, acquired through experience. It is not always straightforward to
encode this knowledge in approaches that are purely numerical. As a result, although numerical
techniques (such as neural networks and deep learning; see [35] for a survey on action recognition
from visual sources) might be quite powerful for some domains and tasks, they might not suffice in
themselves for the purposes of CER learning. There is, however, a trend for using neural networks
for relational learning, e.g., as in [13, 83]. Such hybrid techniques, possibly amenable to deep
learning architectures, could be a promising direction for future research.
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6.2.3 Forecasting. As a final note, we briefly discuss the issue of event forecasting. The field of
predictive analytics has gained considerable traction in the last years. Having the ability to forecast
that an event will probably occur in the future, given a history of past SDEs, could allow a system
to make proactive decisions. The need for event forecasting as a means for proactive behavior has
led to proposals about how forecasting could be conceptualized and integrated within a complex
event processing system. However, such proposals still remain largely at a conceptual level, without
providing concrete algorithms [25, 31]. Most systems for probabilistic CER do not yet possess
any forecasting capabilities ([65] is an exception). Some relevant, but non-relational, methods for
forecasting have been developed within the field of temporal mining (for a relatively old review, see
[47], and for some more recent attempts at event forecasting, see [28, 48, 98]). Relational forecasting,
involving events with complex dependencies, is a research area that remains largely unexplored.
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